Flag Counter
AKILLI SİSTEMLER VE UYGULAMALARI DERGİSİ
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Review of Signal Processing Methods for EEG-Based Wrist Rehabilitation Robots

EEG Tabanlı Bilek Rehabilitasyon Robotları için Sinyal İşleme Yöntemlerinin İncelenmesi

How to cite: Küçükselbes H, Sayılgan E. Review of signal processing methods for eeg-based wrist rehabilitation robots. Akıllı Sistemler ve Uygulamaları Dergisi (Journal of Intelligent Systems with Applications) 2023; 6(2): 34-43.

Full Text: PDF, in English.

Total number of downloads: 137

Title: Review of Signal Processing Methods for EEG-Based Wrist Rehabilitation Robots

Abstract: Rehabilitation is a crucial aspect of recovery for individuals affected by accidents, injuries, or medical conditions. Its objective is to restore functionality and enhance quality of life through a range of therapeutic techniques. This review emphasizes the pivotal role of electroencephalography (EEG) in advancing rehabilitation technologies, particularly through its integration with robotic systems. EEG devices, in conjunction with brain-computer interfaces (BCIs), offer profound insights into patient neural activities, enabling the tailored application of therapeutic exercises. Furthermore, machine learning techniques are employed to interpret EEG data, enhancing the precision and adaptability of rehabilitation interventions. This paper discusses the development and application of advanced machine learning algorithms that classify EEG signals for effective control of rehabilitation robots. These innovations promise to personalize treatment procedures, optimize recovery outcomes, and improve patient autonomy by facilitating direct brain-to-device communication. The continuous evolution of EEG and BCI technologies is set to revolutionize rehabilitation practices, offering new pathways to restore independence and improve the quality of life for patients globally.

Keywords: EEG, brain-computer interface, rehabilitation robots, machine learning, classification


Başlık: EEG Tabanlı Bilek Rehabilitasyon Robotları için Sinyal İşleme Yöntemlerinin İncelenmesi

Özet: Rehabilitasyon, kazalardan, yaralanmalardan veya tıbbi durumlardan etkilenen bireylerin iyileşme sürecinde kritik bir rol oynar. Temel amacı, çeşitli terapötik tekniklerle işlevselliği yeniden sağlamak ve yaşam kalitesini artırmaktır. Bu derleme, özellikle robotik sistemlerle entegrasyonu yoluyla, rehabilitasyon teknolojilerinin geliştirilmesinde elektroensefalografinin (EEG) önemli rolünü vurgulamaktadır. EEG cihazları, beyin-bilgisayar arayüzleri (BCI'ler) ile birlikte, hastaların sinirsel aktivitelerine ilişkin derinlemesine bilgiler sunarak terapötik egzersizlerin hassas bir şekilde uygulanmasına olanak tanır. Ayrıca, EEG verilerini yorumlamak için makine öğrenimi tekniklerinin kullanılması, rehabilitasyon müdahalelerinin doğruluğunu ve uyarlanabilirliğini artırmaktadır. Bu makale, rehabilitasyon robotlarının etkili kontrolü için EEG sinyallerini sınıflandıran gelişmiş makine öğrenme algoritmalarının geliştirilmesini ve uygulanmasını tartışmaktadır. Bu yenilikler, tedavi prosedürlerini kişiselleştirmeyi, iyileşme sonuçlarını optimize etmeyi ve beyinden cihaza doğrudan iletişimi kolaylaştırarak hasta özerkliğini artırmayı vaat etmektedir. EEG ve BCI teknolojilerinin sürekli gelişimi, rehabilitasyon uygulamalarında devrim yaratacak ve dünya çapında hastaların bağımsızlığını yeniden kazanması ve yaşam kalitesini iyileştirmesi için yeni yollar sunacaktır.

Anahtar kelimeler: EEG, beyin-bilgisayar arayüzü, rehabilitasyon robotlar, makine öğrenmesi, sınıflandırma


Bibliography:
  • Short MR, Hernandez-Pavon JC, Jones A, Pons JL. EEG hyperscanning in motor rehabilitation: a position paper. Journal of NeuroEngineering and Rehabilitation 2021; 18: 98.
  • Ahamed NU, Hasan S, Majid FH, Afroz F, Chowdhury SA, Laskar FI. Rehabilitation systems for physically disabled patients: A brief review of sensor-based computerised signal-monitoring systems. Journal of Rehabilitation Research 2013; 24(3): 150-160.
  • Wang J, Zhang X, Huang Y. Design on intelligent perception system for lower limb rehabilitation robot. In 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1907-1912, 2016.
  • Bartur G, Joubran K, Peleg-Shani S, Vatine JJ, Shahaf G. An EEG Tool for Monitoring Patient Engagement during Stroke Rehabilitation: A Feasibility Study. Biomedical Research International 2017; 2017: 9071568.
  • Pichiorri F, Mattia D. Brain-computer interfaces in neurologic rehabilitation practice. Handbook of Clinical Neurology 2020; 168: 101-116.
  • Liu C, Lu J, Yang H, Guo K. Current state of robotics in hand rehabilitation after stroke: A systematic review. Applied Sciences 2022; 12(9): 4540.
  • Lazarou I, Nikolopoulos S, Petrantonakis PC, Kompatsiaris IK, Tsolaki M. EEG-based brain-computer interfaces for communication and rehabilitation of people with motor impairment: A novel approach of the 21st century. Frontiers in Human Neuroscience 2018; 12: 0014.
  • Brantley JA, Paek AY, Steele AG, Contreras-Vidal JL. Brain-Machine Interfaces for Upper and Lower Limb Prostheses. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore, 2022.
  • Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. The Cochrane Database of Systematic Reviews 2017; 11(11): CD008349.
  • Zhang X, Ma Z, Zheng H, Li T, Chen K, Wang X, Liu C, Xu L, Wu X, Lin D, Lin H. The combination of brain-computer interfaces and artificial intelligence: Applications and challenges. Annals of Translational Medicine 2019; 8: 11.
  • Sayilgan E, Yuce YK, Isler Y. Evaluation of mother wavelets on steady-state visually-evoked potentials for triple-command brain-computer interfaces. Turkish Journal of Electrical Engineering \& Computer Sciences 2021; 29(5): 2263-2279.
  • Sayilgan E, Yuce YK, Isler Y. Evaluation of wavelet features selected via statistical evidence from steady-state visually-evoked potentials to predict the stimulating frequency. Journal of the Faculty of Engineering and Architecture of Gazi University 2021; 36(2): 593-605.
  • Sayilgan E, Yuce YK, Isler Y. Investigating the effect of flickering frequency pair and mother wavelet selection in steady-state visually-evoked potentials on two-command brain-computer interfaces. Innovation and Research in BioMedical Engineering 2022; 43(6): 594-603.
  • Yesilkaya B, Sayilgan E, Yuce YK, Perc M, Isler Y. Principal component analysis and manifold learning techniques for the design of brain-computer interfaces based on steady-state visually evoked potentials. Journal of Computational Science 2023; 68: 102000.
  • Sayilgan E, Yuce YK, Isler Y. Frequency recognition from temporal and frequency depth of the brain-computer interface based on steady-state visual evoked potentials. Journal of Intelligent Systems with Applications 2021; 4(1): 68-73
  • Degirmenci M, Sayilgan E, Isler Y. Evaluation of Wigner-Ville distribution features to estimate steady-state visual evoked potentials' stimulation frequency. Journal of Intelligent Systems with Applications 2021; 4(2): 133-136.
  • Avci MB, Hamurcu R, Bozbas OA, Gurman E, Cetin AE, Sayilgan E. Design of steady-state visually-evoked potential based brain-computer interface system. Journal of Intelligent Systems with Applications 2022; 5(2): 86-89.
  • Degirmenci M, Yuce YK, Perc M, Isler Y. Statistically significant features improve binary and multiple motor imagery tasks predictions from EEGs. Frontiers in Human Neuroscience 2023; 17: 1223307.
  • Degirmenci M, Yuce YK, Isler Y. Classification of finger movements from statistically-significant time-domain EEG features. Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 39(3), 1597-1609, 2024.
  • Degirmenci M, Yuce YK, Perc M, Isler Y. EEG-based finger movement classification with intrinsic time-scale decomposition. Frontiers in Human Neuroscience 2024; 18: 1362135.
  • Isler Y, Isler O. Design of expert systems using surface EMG signal for movements of multi-function prosthetic hand. Karaelmas Science and Engineering Journal 2019; 9(2): 237-243.
  • Isler Y, Isler O. EMG controlled 3D printed bionic hand. Natural and Engineering Sciences 2019; 4(3): 59-64.
  • Karakul MS, Gokcen A. Wavelet transform based finger movement recognition. Journal of Intelligent Systems with Applications 2023; 6(2): 21-26.
  • Sayilgan E, Isler Y. Review of rehabilitation technologies based on brain-computer interfaces. In Book of Abstracts, 18, 3rd International Conference of Applied Sciences, Engineering and Mathematics (IBU-ICASEM 2021), June 3-5, Skopje/North Macedonia, 2021.
  • Arslan O, Isler Y. Development of personal trainer device for exercise and rehabilitation tracking. In 5th International Conference on Medical Devices (ICMD'2022), Abstract Book, Gaziantep / Turkey, 06-07 June 2022.
  • Ciklacandir S, Isler Y. System design for entertainment based rehabilitation of the upper extremity. Tıp Teknolojileri Kongresi 2017 (TIPTEKNO-2017), October 12-14, Trabzon/Turkey, Bildiriler Kitabi, 364-367, 2017.
  • Fernandez-Vargas J, Kita K, Yu W. Real-time hand motion reconstruction system for trans-humeral amputees using EEG and EMG. Frontiers in Robotics and AI 2016; 3: 0050.
  • Khan SM, Khan AA, Farooq O. Selection of features and classifiers for EMG-EEG-based upper limb assistive devices-A review. IEEE Reviews in Biomedical Engineering 2020; 13: 248-260.
  • Rashid N, Iqbal J, Javed A, Tiwana MI, Khan US. Design of embedded system for multivariate classification of finger and thumb movements using EEG signals for control of upper limb prosthesis. Biomed Research International 2018; 2018: 2695106.
  • Ma Z, Wang K, Xu M, Yi W, Xu F, Ming D. Transformed common spatial pattern for motor imagery-based brain-computer interfaces. Frontiers in Neuroscience 2023; 17: 1116721.
  • Yamamoto I, Matsui M, Higashi T, Iso N, Hachisuka K, Hachisuka A. Wrist Rehabilitation Robot System and its Effectiveness for Patients. Sensors and Materials 2018; 30(8-2): 1825-1830.
  • Yang S, Li M, Wang J, Shi Z, He B, Xie J, Xu G. A low-cost and portable wrist exoskeleton using EEG-sEMG combined strategy for prolonged active rehabilitation. Frontiers in Neurorobotics 2023; 17: 1161187.
  • Mukherjee P, Roy AH. EEG sensor driven assistive device for elbow and finger rehabilitation using deep learning. Expert Systems with Applications 2024; 244: 122954.
  • Ang KK, Guan C, Phua KS, Wang C, Zhou L, Tang KY, Ephraim Joseph GJ, Kuah CW, Chua KS. Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke. Frontiers in Neuroengineering 2014; 7: 30.
  • Hernandez-Rojas LG, Montoya OM, Antelis JM. Anticipatory detection of self-paced rehabilitative movements in the same upper limb from EEG signals. IEEE Access 2020; 8: 119728-119743.
  • Belwafi K, Gannouni S. EEG-based BCI system to detect fingers movements. Brain Sciences 2020; 10(12): 965.
  • Vuckovic A, Sepulveda F. A two-stage four-class BCI based on imaginary movements of the left and the right wrist. Medical Engineering \& Physics 2012; 34(7): 964-971.
  • Li M, Liang Z, He B, Zhao CG, Yao W, Xu G, Xie J, Cui L. Attention-controlled assistive wrist rehabilitation using a low-cost EEG sensor. IEEE Sensors Journal 2019; 19(15): 6497-6507.
  • Kousarrizi MRN, Ghanbari ARA, Teshnehlab M, Shorehdeli MA, Gharaviri A. Feature extraction and classification of EEG signals using wavelet transform, SVM and artificial neural networks for brain computer interfaces. In 2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing, pp. 352-355, 2009.
  • Zhang Y, Zhou G, Jin J, Wang X, Cichocki A. Evaluation of wavelet features selected via statistical evidence from steady-state visually-evoked potentials to predict the stimulating frequency. Journal of Neural Engineering 2014; 11(4): 046014.
  • Lotte L, Bougrain L, Clerc F. A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. Journal of Neural Engineering 2018; 15(3): 031005.
  • Fisher RA. The use of multiple measurements in taxonomic problems. Annals of Eugenics 1936; 7: 179-188.
  • Rao CR. Linear Statistical Inference and Its Applications, 2nd ed. New York: Wiley, 1973.
  • Rao CR. The utilization of multiple measurements in problems of biological classification. Journal of the Royal Statistical Society: Series B (Methodological) 1948; 10(2): 159-203.
  • Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning, New York, NY: Springer, 2001.
  • Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Transactions on Rehabilitation Engineering 2000; 8(4): 441-446.
  • Blankertz B, Tomioka R, Lemm S, Kawanabe M, Muller KR. Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Processing Magazine 2008; 25(1): 41-56.
  • Koles ZJ, Lazar MS, Zhou SZ. Spatial patterns underlying population differences in the background EEG. Brain Topography 1990; 2(4): 275-284.
  • Lotte F, Congedo M, Lecuyer A, Lamarche F, Arnaldi B. A review of classification algorithms for EEG-based brain–computer interfaces. Journal of Neural Engineering 2007; 4(2): R1-R13.
  • MathWorks. What Is a Convolutional Neural Network? 2024. [Online]. Available at https://www.mathworks.com/discovery/convolutional-neural-network.html
  • LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 1998; 86(11): 2278-2324.
  • Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 2012; 25.
  • Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In 3rd International Conference on Learning Representations (ICLR 2015), 2015, pp. 1–14.
  • He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770-778.
  • Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation 1997; 9(8): 1735-1780.
  • Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. In Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), 2015.
  • Hinton GE, Osindero S, Teh Y. A fast learning algorithm for deep belief nets. Neural Computation 2006; 18(7): 1527-1554.