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Abstract—Rehabilitation is a crucial aspect of recovery for
individuals affected by accidents, injuries, or medical conditions.
Its objective is to restore functionality and enhance quality
of life through a range of therapeutic techniques. This review
emphasizes the pivotal role of electroencephalography (EEG) in
advancing rehabilitation technologies, particularly through its
integration with robotic systems. EEG devices, in conjunction
with brain-computer interfaces (BCls), offer profound insights
into patient neural activities, enabling the tailored application of
therapeutic exercises. Furthermore, machine learning techniques
are employed to interpret EEG data, enhancing the precision and
adaptability of rehabilitation interventions. This paper discusses
the development and application of advanced machine learning
algorithms that classify EEG signals for effective control of
rehabilitation robots. These innovations promise to personalize
treatment procedures, optimize recovery outcomes, and improve
patient autonomy by facilitating direct brain-to-device communi-
cation. The continuous evolution of EEG and BCI technologies
is set to revolutionize rehabilitation practices, offering new
pathways to restore independence and improve the quality of
life for patients globally.

Keywords—eeg; brain-computer interface; rehabilitation robots;
machine learning; classification

Ozetce—Rehabilitasyon, kazalardan, yaralanmalardan veya
tibbi durumlardan etkilenen bireylerin iyilesme siirecinde kritik
bir rol oynar. Temel amaci, cesitli terapotik tekniklerle islevselligi
yeniden saglamak ve yasam kalitesini artirmaktir. Bu derleme,
ozellikle robotik sistemlerle entegrasyonu yoluyla, rehabilitasyon
teknolojilerinin gelistirilmesinde elektroensefalografinin (EEG)
onemli roliinii vurgulamaktadir. EEG cihazlari, beyin-bilgisayar
arayiizleri (BCD’ler) ile birlikte, hastalarin sinirsel aktivitelerine
iliskin derinlemesine bilgiler sunarak terapotik egzersizlerin has-
sas bir sekilde uygulanmasina olanak tamir. Ayrica, EEG verilerini
yorumlamak icin makine 6grenimi tekniklerinin kullanilmasi,
rehabilitasyon miidahalelerinin dogrulugunu ve uyarlanabilir-
ligini artirmaktadir. Bu makale, rehabilitasyon robotlarnin etkili
kontrolii icin EEG sinyallerini smiflandiran gelismis makine
o0grenme algoritmalarimin gelistirilmesini ve uygulanmasin tartis-
maktadir. Bu yenilikler, tedavi prosediirlerini kisisellestirmeyi,
iyilesme sonuclarim optimize etmeyi ve beyinden cihaza dogrudan

iletisimi kolaylastirarak hasta 6zerkligini artirmay1 vaat etmekte-
dir. EEG ve BCI teknolojilerinin siirekli gelisimi, rehabilitasyon
uygulamalarinda devrim yaratacak ve diinya capinda hastalarin
bagimsizhgim yeniden kazanmasi ve yasam kalitesini iyilestirmesi
icin yeni yollar sunacaktir.

Anahtar Kelimeler—eeg; beyin-bilgisayar arayiizii; rehabilita-
syon robotlari; makine é6grenmesi; siniflandirma

I. INTRODUCTION

Rehabilitation is a crucial process aimed at helping indi-
viduals regain their capacity for daily activities and restore
their normal functions. This is often necessary after accidents,
injuries, or medical conditions. Through various therapeutic
techniques, it seeks to help patients recover and improve
their abilities that were impaired due to these adversities. The
approach involves multiple strategies and technologies focused
on restoring functional abilities and enhancing quality of life.
This enables patients to return to their normal routines as
efficiently as possible []1].

In the field of rehabilitation, a variety of medical tech-
niques and signals are employed to optimize patient outcomes.
One such method involves the use of sensor-based signal-
monitoring systems, which have been subjected to critical
review concerning their efficacy in rehabilitating physically
disabled patients. These systems employ a variety of sensors to
monitor physiological signals, thereby enabling the implemen-
tation of therapeutic measures that are specifically tailored to
the individual’s needs [2]. Another noteworthy development
is the field of intelligent medical systems, which facilitate
lower limb joint rehabilitation through the remote transmission
of physiological signals. This methodology allows for precise
monitoring and adjustment of rehabilitation protocols, signif-
icantly improving patient engagement and recovery outcomes
(3.

Electroencephalography (EEG) has been demonstrated to
be a fundamental tool in the field of rehabilitation, offering
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significant insights and therapeutic opportunities, particularly
in neurorehabilitation settings. The significance of EEG in
rehabilitation is further reinforced by its capacity to provide
immediate feedback and facilitate the modulation of neural
activities through non-invasive means. Studies conducted by
Bartur et al. [4]] have demonstrated the feasibility of EEG tools
in monitoring patient engagement during stroke rehabilitation.
These studies have highlighted how EEG metrics can signifi-
cantly enhance patient outcomes by tailoring therapies based
on the brain’s electrical activity. Moreover, EEG hyperscan-
ning, a technique that involves the simultaneous recording of
EEG from multiple subjects, has been explored for its potential
in motor rehabilitation scenarios. This approach facilitates
a more profound comprehension of the dynamics between
patients and therapists during therapy sessions, which may
ultimately result in more efficacious rehabilitation practices
[1].

The field of rehabilitation has witnessed a significant evo-
Iution over the past few decades, moving from traditional
therapeutic methods to innovative approaches that leverage the
potential of modern technology. One of the most significant
advancements in this field is the development and integration
of robotic systems designed for hand rehabilitation after stroke.
Electroencephalography (EEG), a diagnostic tool traditionally
employed in the field of neurology, has recently been employed
in the field of rehabilitation. This integration is primarily
facilitated through the development of brain-computer inter-
faces (BClIs), which allow direct communication between the
brain and external devices. Such technologies not only promise
to enhance the effectiveness of rehabilitation practices but
also offer new hopes for patient autonomy and recovery [J5].
According to Liu et al. [6], robotic-assisted rehabilitation has
shown promise in providing functional training for the hand,
which is often impaired after a stroke. These robots offer
a range of motion exercises and assist with daily activities,
addressing the specific needs of patients with hand disorders.
Despite these advancements, the review highlights that there
are still unmet user needs, particularly in the areas of actuation
and control strategies. Future research is likely to focus on
improving the adaptability and responsiveness of these robotic
systems to enhance patient outcomes [0].

Furthermore, electroencephalogram (EEG)-based brain-
computer interfaces (BCIs) have emerged as transformative
tools in rehabilitation. They facilitate the restoration of mo-
bility and communication for individuals with severe motor
impairments, thereby bridging the gap between patient in-
tent and physical execution through direct brain control of
external devices [7]. These interfaces employ sophisticated
algorithms to interpret neural signals, enabling patients to
control prosthetic limbs, wheelchairs, and even computers,
thereby markedly enhancing their quality of life [J]].

Furthermore, recent developments have demonstrated the
potential of virtual reality (VR) in the field of rehabilita-
tion. The combination of VR and EEG can create immer-
sive environments that enhance motor learning and cognitive
rehabilitation, providing engaging and interactive therapeutic
experiences. Some studies have demonstrated that VR-based
rehabilitation can result in significant improvements in motor
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Figure 1: Illustration of a Brain-Computer Interface (BCI)
System for Rehabilitation

function and cognitive abilities in patients who have suffered
a stroke [9].

Moreover, the integration of artificial intelligence (Al) with
electroencephalography (EEG) and brain-computer interfaces
(BCI) technologies has opened new avenues in the field of
personalized medicine. Artificial intelligence (AI) algorithms
can analyze large datasets of electroencephalography (EEG)
signals to predict patient outcomes and optimize rehabilitation
protocols, thereby enhancing the effectiveness and personal-
ization of treatments [[10].

These studies collectively illustrate the pivotal role of EEG
in enhancing rehabilitation techniques, affirming its value in
both clinical and research settings to improve the quality and
effectiveness of patient care. The continuous evolution of these
technologies promises to bring even more innovative solutions
to the field of rehabilitation, with the ultimate goal of restoring
independence and improving the quality of life for patients
worldwide (Fig[T).

II. EEG-BASED REHABILITATION SYSTEMS
A. Related Studies

A review of the literature reveals that the use of electroen-
cephalography (EEG) [11]-[20] and electromyography (EMG)
[21]]-[23]] signals in control systems for prosthetic and assistive
devices, particularly for hand and wrist rehabilitation, has been
extensively studied [24]|-[26]. Fernandez-Vargas, Kita, and Yu
(2016) investigated a real-time hand motion reconstruction
system that integrates EEG and EMG signals to enhance
prosthetic control. The authors emphasized the importance of
targeting motor cortex regions to improve motor execution
and intention understanding [27]]. Similarly, Khan, Khan, and
Farooq (2019) discussed the processing of EEG signals for
feature extraction and classification, furthering the use of
these signals in brain-computer interface (BCI) systems for
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prosthetic applications. These studies emphasize the crucial
importance of high-resolution temporal and spatial EEG data
in the development of more intuitive and effective rehabilitative
and assistive technologies [28].

For instance, Rashid et al. explored the potential of elec-
troencephalography (EEG) signals to classify movements of
the fingers and thumbs, which are crucial for controlling
upper limb prostheses. The methodology employed sophisti-
cated algorithms capable of capturing subtle changes in brain
activity corresponding to different finger movements. This
was achieved through the design of an embedded system
for multivariate classification of finger and thumb movements
using EEG signals for control of upper limb prostheses [29].
A recent study concentrated on EEG data obtained during
imagined hand movements, utilizing Common Spatial Patterns
(CSP) to extract features that enhance the classification of
motor imagery for neuro-rehabilitation purposes [30].

A systematic review of the literature was conducted to assess
the effectiveness of the Wrist Rehabilitation Robot System
(WRRS) for patients [31]]. This study aimed to investigate
the integration of electroencephalography (EEG) and near-
infrared spectroscopy (NIRS) data to evaluate the effectiveness
of a wrist rehabilitation robot system. The EEG data were
employed to monitor the motor cortex activity and emotional
responses of the patients during the therapy sessions. This pro-
vided insights into the patients’ motivation and their interaction
with the system. The comprehensive data analysis enabled an
objective assessment of both the therapeutic outcomes and the
overall performance of the rehabilitation system, demonstrat-
ing its impact on patient recovery.

The objective of this research was to design an embedded
system for multivariate classification of finger and thumb
movements using EEG signals for the control of upper limb
prostheses. This research project aimed to develop an embed-
ded system that utilizes electroencephalography (EEG) signals
to control upper limb prostheses by classifying finger and
thumb movements. Advanced signal processing algorithms
were employed to analyze EEG data collected from the motor
cortex. Time and frequency domain analyses were used to
extract detailed features that were necessary for accurate
movement classification. The system was designed to be
highly responsive and energy-efficient, thereby enhancing the
functionality and user-friendliness of prosthetic devices [29]].

A recent study describes the development of an affordable,
portable wrist exoskeleton designed to facilitate wrist reha-
bilitation through a hybrid control strategy using both EEG
(electroencephalography) and sEMG (surface electromyogra-
phy) signals. The study involved both healthy participants and
patients needing wrist rehabilitation. EEG data were collected
using electrodes placed according to the international 10-20
system, while SEMG signals were obtained from sensors on
the forearm muscles. Key features such as movement-related
cortical potentials (MRCPs), spectral power from EEG, and
amplitude and frequency characteristics from sEMG, were
extracted and processed using convolutional neural networks
(CNNs). These signals were then used to control the wrist
exoskeleton, enabling precise, responsive movements tailored
to the user’s rehabilitation needs. The combined EEG-sEMG
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strategy significantly improved the accuracy and effectiveness
of the exoskeleton, making it a promising tool for home-based
wrist rehabilitation [32]].

Another study focuses on developing a deep learning-based
assistive device that utilizes EEG signals to aid in the rehabili-
tation of elbow and finger movements. The study involves both
healthy participants and patients requiring rehabilitation. EEG
data is collected using a 32-channel setup according to the
international 10-20 system, capturing electrical activity from
various brain regions. Key features such as movement-related
cortical potentials (MRCPs) and spectral power are extracted
from the EEG signals. Deep learning algorithms, including
Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs), are employed to classify these signals and
detect movement intentions. The EEG-driven assistive device
translates these detected intentions into control commands for
rehabilitation exercises. The results indicate high accuracy
in movement detection and significant improvements in the
rehabilitation process, providing a more effective and user-
friendly solution for patients with motor impairments [33].

The objective of this research is to develop a Brain-
Computer Interface (BCI)-based robotic end effector system
for the rehabilitation of wrist and hand function [34]]. In this
study, electroencephalogram (EEG) data from chronic stroke
patients were employed to control a robotic end effector for
wrist and hand rehabilitation. The data were processed through
a brain-computer interface (BCI), to enhance the personaliza-
tion of the rehabilitation process. By accurately interpreting
the patients’ motor intention signals, the system was able to
provide tailored therapeutic exercises, significantly improving
the rehabilitation outcomes for stroke survivors.

In another study, the potential of EEG signals is examined
to predict self-initiated movements in the upper limb, with
a focus on both healthy individuals and stroke patients. The
study employed electroencephalography (EEG) data collected
from 64 channels positioned according to the international
10-20 system, a standard method for capturing brain activity
related to motor functions. The data analysis focused on motor-
related cortical potentials (MRCPs) and spectral power features
to identify movement intentions. Machine learning algorithms,
including artificial neural networks (ANN), support vector
machines (SVM), and linear discriminant analysis (LDA), were
employed to classify the EEG signals, with detection accuracy
ranging from 64.3% to 77.0%. The study demonstrated that
anticipatory detection could occur between 620 and 1000
milliseconds before movement onset, suggesting significant
potential for enhancing neurorehabilitation devices by enabling
more responsive and natural control during rehabilitation ther-
apy [33].

This study presents an EEG-based BCI system designed to
detect finger movements. This paper presents the development
of a brain-computer interface system that utilizes electroen-
cephalography (EEG) data to detect finger movements. The
EEG signals, indicative of motor cortex activity, were subjected
to processing using sophisticated algorithms and feature ex-
traction techniques. The system was designed with the specific
intention of enhancing the precision of movement detection,
thereby improving the effectiveness of rehabilitative therapies
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[36].

In addition, the EEG data play a pivotal role in the de-
velopment of a brain-computer interface (BCI) designed to
classify imagined wrist movements. The EEG signals are
collected from multiple scalp electrodes, which have been
strategically placed to capture electrical activities from the
motor cortex. This is the region of the brain where neural
representations of limb movements are processed. The data are
primarily focused on the electroencephalogram (EEG) patterns
associated with the imaginary flexion and extension of both the
left and right wrists. The EEG data are subjected to a two-stage
classification process, the initial stage of which is to distinguish
between the types of movement (flexion or extension), and
the subsequent stage is to identify the specific wrist (left or
right) involved in the imagined movement. This study employs
sophisticated signal processing techniques, including band-
pass filtering, to isolate the frequency bands most associated
with motor imagery. It also utilizes advanced classification
algorithms to enhance the accuracy of detecting these imagined
movements. The high-resolution temporal and spatial data
extracted from the EEG allows for the precise interpretation of
subtle differences in brain activity patterns, which is essential
for the effective operation of BCIs in prosthetic control and
rehabilitation applications. This comprehensive approach to
data utilization exemplifies the potential of EEG-based systems
to revolutionize assistive technology, offering more intuitive
and adaptable user interfaces for individuals with motor im-
pairments [37]].

This study introduces an innovative approach to wrist reha-
bilitation that employs a low-cost EEG sensor to monitor and
respond to patient attention levels. This study introduced an
innovative approach to wrist rehabilitation, employing a low-
cost EEG sensor to monitor and respond to patient attention
levels. By adjusting the device’s operation based on real-
time EEG data reflecting the patient’s cognitive engagement,
the rehabilitation process became more adaptive and patient-
centred. This method not only enhanced patient participation
but also demonstrated the potential for cognitive monitoring
to enhance the effectiveness of physical rehabilitation [38].

B. Preprocessing Steps

1) Signal Filtering: Signal filtering is a fundamental pre-
processing step used to improve the quality of EEG signals.
It involves the isolation of relevant frequency bands and the
removal of noise. Band-pass filters are frequently employed to
concentrate on specific frequency ranges, including the alpha
(8-12 Hz), beta (13-30 Hz), and gamma (30-100 Hz) bands.
These bands are associated with motor control and cognitive
activities. For example, band-pass filtering is employed to
enhance the signal-to-noise ratio by eliminating unwanted
frequencies and artifacts [29]], [31]], [36].

2) Artifact Removal: Another crucial preprocessing step is
the removal of artifacts from EEG signals. This involves the
elimination of unwanted physiological and external artifacts.
The most common artifacts include eye blinks, muscle move-
ments, and electrical noise. Techniques such as Independent
Component Analysis (ICA) and Principal Component Analysis
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(PCA) are frequently employed to identify and remove these
artifacts. Studies such as [34] and [38] utilize artifact removal
methodologies to ensure that the EEG data accurately reflects
the user’s brain activity, free from interference from external
sources.

3) Normalization: Normalization is a technique employed
to scale EEG signals to a common range, which is a crucial
step in ensuring consistent feature extraction and analysis.
This process adjusts the amplitude of the EEG signals to a
standardized range, thereby reducing variability and enhancing
the comparability of the signals across different sessions and
subjects. Normalization techniques are employed in studies
such as [33] to guarantee that the input data to machine
learning models is consistent and reliable.

4) Baseline Correction: Baseline correction is a preprocess-
ing technique employed to adjust EEG data to a baseline level,
thereby correcting for drifts and other slow variations in the
signal. This process entails the subtraction of the baseline,
which is typically a period of rest or inactivity, from the EEG
data. This serves to remove low-frequency noise and enhance
the detection of event-related potentials (ERPs) and movement-
related cortical potentials (MRCPs). The study, entitled [35],
employs baseline correction to ensure the accurate detection
of anticipatory brain activity related to self-paced movements.

5) Signal Segmentation: Signal segmentation is the pro-
cess of dividing continuous EEG signals into smaller, more
manageable epochs or segments for subsequent analysis. This
is particularly useful for the analysis of time-locked events,
such as motor imagery tasks or specific cognitive activities.
Segmentation permits the focused analysis of specific time
windows in which it is anticipated that relevant brain activity
will occur. The study, entitled [37]], employs signal segmenta-
tion to analyze distinct epochs corresponding to different motor
imagery tasks.

6) Attention Level Quantification: Attention level quantifi-
cation is a specific preprocessing step employed in studies that
focus on cognitive engagement, such as [38|]. This process en-
tails the extraction of features related to attention and cognitive
states from EEG signals, frequently employing metrics such
as mean amplitude and frequency. The quantified attention
levels are subsequently employed to regulate assistive devices,
thereby enabling the rehabilitation process to be responsive to
the user’s mental state and to adapt accordingly.

7) Multimodal Signal Processing: In studies that combine
EEG with other physiological signals, such as [32], the prepro-
cessing stage involves the handling of multiple types of data.
In the case of EEG and sEMG signals, preprocessing involves
filtering, artifact removal, and normalization for both signal
types in order to ensure accurate integration and analysis. This
multimodal approach enhances the robustness and effective-
ness of the rehabilitation system by leveraging complementary
information from different physiological sources.

It is of paramount importance to employ preprocessing
methods in order to guarantee the quality of EEG data utilized
in rehabilitation studies. This ensures the accurate extraction
of features and subsequent analysis. The removal of noise,
and artifacts, and the establishment of consistency through
these preprocessing steps facilitate the development of more
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effective and reliable EEG-based rehabilitation technologies.

C. Feature Exctraction

1) Time-Domain and Frequency-Domain Analysis: Time-
domain and frequency-domain analysis are crucial for ex-
tracting features that capture the dynamics of EEG signals.
Time-domain analysis extracts features such as mean, variance,
and amplitude to understand the temporal characteristics of
motor intentions [29], [33]]. Frequency domain analysis, often
performed using Fourier transform, converts EEG signals from
the time domain to the frequency domain, allowing extraction
of the power spectral density (PSD) and dominant frequency
components [31]], [37].

2) Event-Related Potentials (ERP) and Movement-Related
Cortical Potentials (MRCPs): ERP and MRCP analysis are
key techniques for identifying brain activity associated with
motor tasks. ERPs are used to extract features that reflect
the user’s motor intentions and cognitive engagement. In [3§]],
ERP analysis helps to quantify the level of attention required
to control the movements of the wrist exoskeleton. MRCPs,
which indicate motor planning and execution, are extracted
[31], [32]]. These potentials provide insight into the user’s
motor-related brain activity and are crucial for the design of
responsive rehabilitation systems.

3) Spatial Filtering: Spatial filtering techniques, such as
Common Spatial Patterns (CSP), improve the signal-to-noise
ratio by identifying spatial filters that maximize the variance
between different classes of movement. This method is par-
ticularly effective in distinguishing between different motor
imagery tasks. CSP is used in several studies [29], [34], [37].
Spatial filtering helps to improve the discrimination of motor
intentions, leading to more accurate and reliable control of
rehabilitation devices.

4) Machine Learning and Deep Learning Algorithms: Ad-
vanced machine learning algorithms, including support vector
machines (SVM) and linear discriminant analysis (LDA), are
used to classify extracted features into specific movements.
These methods are highlighted in studies [29], [36]]. In addi-
tion, deep learning techniques such as Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs)
are used to automatically extract complex features from EEG
signals. Another study demonstrates the use of CNNs and
RNNs to classify EEG patterns corresponding to different
movements, thereby improving the control strategy of assistive
devices [33]].

5) Time-Frequency Analysis: Time-frequency analysis pro-
vides a dynamic representation of EEG signals, capturing
changes in frequency components over time. Techniques such
as Short-Time Fourier Transform (STFT) and Wavelet Trans-
form are used to perform time-frequency analysis. This method
is used in studies [33]], [34]. Time-frequency analysis allows
the extraction of both temporal and spectral features, providing
a comprehensive understanding of brain activity associated
with motor tasks.

6) Feature Reduction: Feature reduction techniques, such
as Principal Component Analysis (PCA), are used to reduce
the dimensionality of the extracted features, retaining the most
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informative components while minimizing redundancy. This
helps to improve the computational efficiency and performance
of the classification algorithms. PCA is used to ensure that the
system processes only the most critical information necessary
for accurate prosthesis control [29].

7) Multimodal Signal Processing: In [32]], EEG is com-
bined with other physiological signals, and feature extrac-
tion involves handling multiple types of data. For EEG and
sEMG signals, features such as movement-related cortical
potentials (MRCPs), spectral power from EEG, and amplitude
and frequency characteristics from SEMG are extracted and
integrated. Convolutional Neural Networks (CNNs) are used
to process these multimodal signals, enabling precise and
responsive control of the rehabilitation device.

8) Attention and Cognitive Engagement Metrics: In studies
focusing on cognitive engagement, feature extraction involves
quantifying attention and cognitive states from EEG signals
[38]. Metrics such as mean amplitude, frequency, and level
of attention are extracted to control assistive devices, making
the rehabilitation process adaptive and responsive to the user’s
mental state.

D. Classification

1) Support Vector Machines: Support Vector Machines
(SVM) is a widely employed classification method. SVM is
a novel classification method developed by Vapnik that has
shown remarkable effectiveness in solving various practical
problems, including those of the Brain-Computer Interface
(BCD) [39]]. The method is employed to differentiate data into
distinct classes by identifying the optimal hyperplane that
maximizes the margin between the classes. Support Vector
Machines (SVM) utilize hyperplanes to effectively distinguish
between data from multiple classes. This classification tech-
nique is categorized based on the nature of the dataset it
handles: whether it is linearly separable or not. For linearly
separable datasets, the decision boundary must be positioned
as far as possible from the nearest data points of each class,
which are known as support vectors. These support vectors are
critical as they define the margin of the classifier and enhance
its robustness to new data. In scenarios where the dataset is
not linearly separable, SVMs adapt by employing the kernel
trick. This method involves the transformation of data into a
higher-dimensional space using a kernel function, denoted as
K(x, y), allowing for the linear separation of data in this new
feature space. The kernel function facilitates this transforma-
tion implicitly, bypassing the need for explicit computation in
the high-dimensional space. Within the realm of EEG-based
Brain-Computer Interface (BCI) research, kernels such as the
Gaussian and radial basis function (RBF) are predominantly
utilized. These kernels are adept at handling the complex
nature of EEG data, which often involves intricate patterns
that are not linearly separable in their original form. By using
these kernels, SVM can effectively classify EEG signals, thus
enhancing the interpretative capabilities of BCI systems [40],
[41]. This technique has been employed in several studies to
classify electroencephalogram (EEG) signals associated with
different motor tasks. SVM is employed to categorize the EEG
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signals into distinct finger and thumb movements, thereby
enhancing the system’s capacity to accurately discern motor
intentions [29]]. Similarly, SVM is also employed to achieve
high accuracy in the detection of motor intentions from EEG
patterns [36]]. Furthermore, SVM is employed to categorize
motor imagery tasks, thereby enhancing the system’s capacity
to comprehend user intentions [34].

2) Linear Discriminant Analysis: Linear Discriminant Anal-
ysis (LDA) is a statistical method used for finding a linear
combination of features that best separates two or more classes
of objects or events. This technique, introduced by R. A.
Fisher in 1936, aims to maximize the ratio of between-class
variance to the within-class variance in any particular dataset,
thus guaranteeing maximal separability [42]. LDA works by
projecting the data onto a lower-dimensional space with good
class separability to avoid overfitting and reduce computational
costs. It is particularly useful in scenarios involving more
than two classes, making it a generalization of Fisher’s linear
discriminant [43]].

LDA is employed to categorize EEG signals into distinct
motor tasks, while simultaneously reducing the dimensionality
of the data and preserving the discriminatory features [29].
Similarly, LDA is also used in the initial classification stage
to differentiate between flexion and extension movements,
followed by the identification of the specific wrist involved
in the subsequent stage [37].

3) Mathematical Formulation:

a) Mean Vectors: For a given dataset with k classes,
compute the mean vector for each class yy and the overall
mean i

1
uk=m2xi (1

where Ny is the number of samples in class k£ and z; is a
sample vector in class &k [42]].
b) Scatter Matrices: Compute the within-class scatter
matrix Sy, and the between-class scatter matrix Spg:

K N
Sw = Z Z(l’z‘ — ) (@i — )" 2
k=1 i=

i=1

K
Sp = ZNk(Mk — ) (e — )" (3)
k=1
[43]].
c) Eigenvalue Problem: Solve the generalized eigenvalue
problem for the matrix S‘jvl Sg:

Syt Spw = Aw @)

Here, w are the eigenvectors and A are the corresponding
eigenvalues. The eigenvectors corresponding to the largest
eigenvalues form the columns of the transformation matrix
[46].
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d) Transformation: Project the original dataset X onto
the new subspace using the transformation matrix W:

Y = XW (5)

where Y is the transformed dataset [46].

By maximizing the between-class scatter while minimizing
the within-class scatter, LDA effectively separates the classes
in a lower-dimensional space. These steps help in transforming
the data in such a way that the clusters become more distinct.
This dimensionality reduction not only improves computa-
tional efficiency but also aids in avoiding overfitting, thus
optimizing the performance of machine learning models [42],
[44], [46].

4) Common Spatial Patterns (CSP): Common Spatial Pat-
terns (CSP) is a spatial filtering technique that enhances the
discriminative power of electroencephalogram (EEG) signals
by maximizing the variance between different classes. CSP
is particularly effective in motor imagery tasks and has been
employed in several studies. For instance, CSP is employed
to enhance the signal-to-noise ratio, thereby improving the
system’s ability to differentiate between motor tasks [29]. CSP
facilitates the differentiation of motor imagery tasks, thereby
enhancing the accuracy of classification [34]. Similarly, CSP
is also employed to enhance feature extraction, thereby aiding
the classification of motor imagery tasks [37].

The CSP algorithm works by finding spatial filters that
maximize the variance for one class while minimizing it for
the other. This method is particularly effective for analyzing
EEG signals associated with different mental states or motor
imagery tasks. CSP can optimally filter spatial components of
EEG data to enhance the detection of specific mental tasks
[47].

5) Mathematical Formulation: The mathematical formula-
tion of CSP involves several key steps:

a) Data Preparation: Consider two sets of multivariate
signals X; and X5, corresponding to two different classes.
Each signal is represented as a matrix of size N x T, where
N is the number of channels (sensors) and 1" is the number
of time points.

b) Covariance Matrices: Compute the spatial covariance
matrices for each class. For a given signal matrix X, the
covariance matrix C is computed as follows:

. .5
' trace(X; X))

where ¢ denotes the class (1 or 2), and trace denotes the
sum of the diagonal elements of the matrix [47].
c¢) Composite Covariance Matrix: Calculate the compos-
ite covariance matrix C. by adding the covariance matrices of
both classes:

(6)

C.=C1+Cy )

d) Eigenvalue Decomposition: Perform an eigenvalue de-
composition on the composite covariance matrix C.:

C.=UANUT €))
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Here, U is the matrix of eigenvectors, and A is the diagonal
matrix of eigenvalues [48].
e) Whitening Transformation: Compute the whitening
transformation matrix P:

P=A3UT )

This transformation ensures that the covariance matrix of
the transformed data is the identity matrix [48].
f) Transformation of Covariance Matrices: Apply the
whitening transformation to the covariance matrices C; and
CQZ

S, = PC, PT (10)
Sy = PCyPT (11)

g) Generalized Eigenvalue Problem: Solve the general-
ized eigenvalue problem for the matrices S; and Ss:

Slﬂ) = )\SQ'LU (12)

Here, w are the generalized eigenvectors, and A are the
corresponding eigenvalues [49].

h) Selection of Filters: The eigenvectors w correspond-
ing to the largest and smallest eigenvalues form the spatial
filters. These filters maximize the variance for one class while
minimizing it for the other.

i) Feature Extraction: Project the original signals X onto
the spatial filters to obtain the CSP features:

Z=WTX (13)

Here, W is the matrix of selected eigenvectors (spatial
filters), and Z represents the transformed signals in the new
feature space [50].

6) Convolutional Neural Networks (CNNs): Convolutional
Neural Networks (CNNs) are deep learning models that auto-
matically extract complex features from input data by applying
convolutional layers. These networks are particularly effective
in analyzing visual data but have also been adapted for other
types of data, such as time series and signal processing. CNNs
consist of multiple layers, including convolutional layers,
pooling layers, and fully connected layers, each of which
plays a crucial role in feature extraction and classification.
A convolutional neural network can have tens or hundreds
of layers that each learn to detect different features of an
image. Filters are applied to each training image at different
resolutions, and the output of each convolved image is used
as the input to the next layer [51].

In a study, convolutional neural networks (CNNs) are em-
ployed to extract and classify features from electroencephalog-
raphy (EEG) signals, to enhance the control strategy of the
assistive device [33]]. CNNs are capable of capturing complex
patterns in EEG data related to different movements, thereby
enhancing the accuracy of the system. Furthermore, CNN
is also employed to process multimodal signals (EEG and
SEMQG), thereby enabling precise and responsive control of the
wrist exoskeleton [32].
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The foundational work by Yann LeCun and colleagues
demonstrated the effectiveness of CNNs in document recogni-
tion, paving the way for their application in various fields [52].
The introduction of AlexNet by Krizhevsky et al. [53]] marked
a significant milestone in image classification, showcasing the
power of deep CNNs in handling large-scale image datasets.
Further advancements, such as the VGG network [54] and
ResNet [55]], have continued to push the boundaries of what
CNNSs can achieve.

7) Recurrent Neural Networks (RNNs): Recurrent Neural
Networks (RNNs) are deep learning models designed to handle
sequential data, effectively capturing temporal dependencies in
time-series data such as electroencephalogram (EEG) signals.
Unlike feedforward neural networks, RNNs have connections
that form directed cycles, allowing them to maintain a 'mem-
ory’ of previous inputs through internal states, which makes
them particularly suited for sequential data processing. RNNs
process sequential data by passing the input through hidden
layers one step at a time while retaining information about
previous inputs. This recurrent structure allows the network
to maintain short-term memory, enabling it to predict future
data points based on past inputs. Specifically, RNNs work
by incorporating loops within their architecture that allow
information to persist.

Each unit of an RNN can be mathematically described as
follows: At each time step ¢, the input x; is combined with
the hidden state from the previous time step h;_;. The hidden
state h; at time step t is computed as

hy = tanh(Wopxy + Wiphe—1 + by) (14)

where W, is the weight matrix for the input to hidden
state, Wp,, is the weight matrix for the hidden state to hidden
state transition, and by, is the bias vector. The output y, at each
time step ¢ is computed as

Yt = Whyht + by (15)

where W, is the weight matrix from hidden state to output,
and b, is the bias vector.

RNNs are widely used in various applications, including
natural language processing (NLP), speech recognition, and
time-series forecasting. They excel at tasks where context and
sequential information are crucial for accurate predictions. In
NLP, RNNs can be used for tasks such as language modeling,
machine translation, and text generation. Their ability to handle
sequences makes them ideal for understanding and generating
human language. In speech recognition, RNNs are used to
convert spoken language into text by processing the sequential
audio signals. For time-series forecasting, RNNs can predict
future values in a time series by learning patterns from
historical data.

RNNs are used to capture the temporal dynamics of EEG
signals, thereby improving the accuracy of the assistive de-
vice’s control strategy by modeling the sequential nature of
the data [33|]. Hochreiter and Schmidhuber introduced Long
Short-Term Memory (LSTM) networks, a variant of RNNs
that addresses the vanishing gradient problem, making them
more effective for long-term dependencies [56]]. Bahdanau
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and colleagues demonstrated the effectiveness of RNNs in
machine translation tasks, showing how they can maintain
context through sequences to translate languages accurately
[S57]. These advancements have significantly contributed to the
widespread adoption and success of RNNs in various fields.

8) Artificial Neural Networks (ANNs): Artificial Neural
Networks (ANNs) are computational models inspired by the
structure and function of biological neural networks. They
consist of interconnected layers of nodes, or neurons, that
process information by responding to external inputs, passing
information between each other, and learning from data. The
connections between nodes, known as weights, are adjusted
during the training process, allowing the network to learn
specific tasks from input-output pairs. This learning process
is typically performed using the back-propagation algorithm,
which updates the weights to minimize the error in predictions
[56].

ANNSs have been successfully applied in various domains,
such as document recognition [52]] and pattern recognition
[S5]. ANNs are also used to classify EEG signals and predict
self-initiated movements, achieving high detection accuracy
by learning complex patterns in the EEG data related to
anticipatory brain activity [35]. Advances in deep learning,
such as the development of deep belief networks [56] and
convolutional neural networks [[53]], have further enhanced the
capabilities of ANNs, enabling them to tackle complex tasks in
image and speech recognition. These developments highlight
the versatility and effectiveness of ANNs in handling diverse
and challenging problems in artificial intelligence.

III. RESULTS

In a study, although several signal processing methods
such as band-pass filtering, event-related potential (ERP)
analysis, power spectral density (PSD) analysis, and near-
infrared spectroscopy (NIRS) analysis were employed, the
accuracy rate was not specified [31]. In another study, a
variety of methods were employed, including band-pass filter-
ing, time-domain analysis, frequency-domain analysis, Com-
mon Spatial Patterns (CSP), and Principal Component Anal-
ysis (PCA). These methods were used to achieve an accu-
racy rate of 92% [29]. Another study employed band-pass
filtering, Event-Related Desynchronization/Synchronization
(ERD/ERS), Common Spatial Patterns (CSP), and Short-Time
Fourier Transform (STFT) methodologies, resulting in an accu-
racy rate of 85% [34]. A study employed band-pass filtering,
time-domain analysis, frequency-domain analysis, and Com-
mon Spatial Patterns (CSP) methods, resulting in an accuracy
rate of 90% [36]. Another study employed band-pass filtering,
Event-Related Potential (ERP) analysis, and attention level
quantification methods, resulting in a 25% reduction in reha-
bilitation time. However, the accuracy rate was not specified
[38]. In another study, a variety of analytical techniques were
employed including band-pass filtering, time-domain analysis,
frequency-domain analysis, Convolutional Neural Networks
(CNNs), and Recurrent Neural Networks (RNNs). This ap-
proach yielded an accuracy rate of 88% [33]]. Another study
also employed a range of analytical techniques, including
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band-pass filtering, extraction of Movement-Related Cortical
Potentials (MRCPs), the use of Artificial Neural Networks
(ANN), Support Vector Machines (SVM), and Linear Discrim-
inant Analysis (LDA). This approach resulted in an accuracy
rate of 77% [35]. Another study employed band-pass filtering,
Common Spatial Patterns (CSP), Support Vector Machines
(SVM), and Linear Discriminant Analysis (LDA) methods,
achieving an accuracy rate of 80% [37]]. In another study, some
methods were employed, including band-pass filtering, the
extraction of Movement-Related Cortical Potentials (MRCPs),
the analysis of amplitude and frequency characteristics from
SEMG, the use of Convolutional Neural Networks (CNNs), and
the application of Multimodal Integration Techniques. These
methods were used in conjunction with one another, and the
resulting accuracy rate was 87% [32].

IV. CONCLUSION

This review emphasizes the pivotal role of electroen-
cephalography (EEG) technology and machine learning al-
gorithms in the rehabilitation of individuals who have lost
functional abilities as a result of accidents, injuries, or medical
conditions. EEG devices and brain-computer interfaces (BCI)
provide comprehensive information about patients’ neural ac-
tivities, allowing for the personalization of rehabilitation pro-
cesses. By interpreting EEG data, machine learning techniques
enable rehabilitation robots to adapt to the patient’s needs, thus
making treatment processes more effective.

The continued development of EEG and BCI technologies
has the potential to advance rehabilitation practices further,
improving independence and quality of life for patients around
the world. These technologies have improved the accuracy of
therapeutic applications and recovery processes of patients,
especially in areas such as neurorehabilitation and post-stroke
hand rehabilitation. In the coming period, EEG-based reha-
bilitation systems are expected to be further personalized and
widespread.

Consequently, EEG-based rehabilitation technologies can
transform patients’ lives by occupying a unique position at
the intersection of health sciences and engineering disciplines.
The evolution of these technologies will continue to shape
rehabilitation practice and revolutionize global health. These
developments will not only be limited to technological innova-
tions but will also require redefining ethical, social, and legal
frameworks.
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