Flag Counter
AKILLI SİSTEMLER VE UYGULAMALARI DERGİSİ
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Android Malware Application Detection using Multi-layer Perceptron

Çok Katmanlı Algılayıcı Kullanarak Android Kötü Amaçlı Yazılım Uygulama Tespiti

How to cite: Altan G, Paşalıoğlu F. Android malware application detection using multi-layer perceptron. Akıllı Sistemler ve Uygulamaları Dergisi (Journal of Intelligent Systems with Applications) 2022; 5(2): 95-99.

Full Text: PDF, in English.

Total number of downloads: 583

Title: Android Malware Application Detection using Multi-layer Perceptron

Abstract: Cyber-attacks are one of the most critical problems that seriously threaten society. Whereas there are various presentations and ways of carrying out cyber-attacks, numerous mechanisms and techniques exist to defend applications. Many malware creators have chosen the Android operating system as a target due to its popularity. Thousands of new malware samples, aiming to infect new devices daily, are trying to circumvent the security measures implemented by Android app stores. This study experiments with a multi-layer perceptron model for Android malware detection. This proposed system is based on static analysis techniques on Android. We analyzed popular machine learning algorithms with a total number of 129013 applications (5560 malicious and 123453 harmless software). We achieved higher malware-detection rates of 97.60% in the iterations.

Keywords: Classification; Multi-layer perceptron; Malware detection; Cyber-attack; Cyber-security; Android


Başlık: Çok Katmanlı Algılayıcı Kullanarak Android Kötü Amaçlı Yazılım Uygulama Tespiti

Özet: Siber saldırılar, toplumu ciddi şekilde tehdit eden son zamanların en kritik sorunlarından biridir. Siber saldırıları gerçekleştirmenin çeşitli sunumları ve yolları olsa da, uygulamaları savunmak için çok sayıda mekanizma ve yöntem mevcuttur. Birçok kötü amaçlı yazılımcı, popülaritesi nedeniyle Android işletim sistemini hedef olarak seçmektedir. Her gün yeni cihazlara erişmeyi amaçlayan binlerce yeni kötü amaçlı yazılım örneği, Android uygulama mağazalarının uyguladığı güvenlik önlemlerini atlatmaya çalışmaktadır. Bu çalışma, Android tabanlı çalışan kötü amaçlı yazılım tespiti için çok katmanlı algılayıcı modeli ile deneyler gerçekleştirmektedir. Önerilen bu sistem Android üzerinde kullanılan statik analiz tekniklerine dayanmaktadır. Popüler makine öğrenimi algoritmalarını toplam 129013 uygulama (5560 kötü amaçlı ve 123453 zararsız yazılım) ile analiz edilmiştir. İterasyonlarda %97,60'dan daha yüksek kötü amaçlı yazılım algılama oranları elde edilmiştir.

Anahtar kelimeler: Sınıflama; Çok katmanlı algılayıcılar; Kötü amaçlı yazılım tespiti; Siber atak; Siber güvenlik; Android


Bibliography:
  • AV-TEST, The Independent IT-Security Institute. Security Report: Facts and Figures. Magdeburg, 2020.
  • Zhou Y, Jiang X. Dissecting android malware: Characterization and evolution. 2012 IEEE Symposium on Security and Privacy 2012; pp. 95-109.
  • Castillo CA. Android malware past, present, and future. White Paper of McAfee Mobile Security Working Group 1 2011; p. 16.
  • Andronio N, Zanero S, Maggi F. Heldroid: Dissecting and detecting mobile ransomware. International workshop on recent advances in intrusion detection, 2015; pp. 382-404.
  • Martinelli F, Mercaldo F, Nardone V, Santone A, Vaglini G. Model checking and machine learning techniques for HummingBad mobile malware detection and mitigation. Simulation Modelling Practice and Theory 2020; 105: 102169.
  • Parvez F. Android security: A survey of issues, malware penetration, and defenses. IEEE Communications Surveys and Tutorials 2015; 17(2): 998-1022.
  • Shankar S. The do you knows of DDoS attacks. 18 Mart 2021. [Online]. Retrieved from https://www.mcafee.com/blogs/consumer/mobile-ddos/
  • Douligeris C, Mitrokotsa A. DDoS attacks and defense mechanisms: classification and state-of-the-art. Computer Networks 2004; 44(5): 643-666.
  • Karbab EB, Debbabi M, Derhab A, Mouheb D. Android malware detection using deep learning on API method sequences. Elsevier Digital Investigations Journal 2017; p. 17.
  • Ganesh M, Pednekar P, Prabhuswamy P, Nair DS, Park Y, Jeon H. CNN-based Android malware detection. In International Conference on Software Security and Assurance (ICSSA), Altoona, PA, USA, 2017.
  • Kim T, Kang B, Rho M, Sezer S, Im EG. A multimodal deep learning method for Android malware detection using various features. IEEE Transactions on Information Forensics and Security 2019; 14(3): 773-788.
  • Xu Z, Ren K, Qin S, Craciun F. CDGDroid: Android malware detection based on deep learning using CFG and DFG. Book chapter in Formal Methods and Software Engineering, 2018, pp. 5-11.
  • Xiao X, Zhang S, Mercaldo F, Guangwu H, Sangaiah AK. Android malware detection based on system call sequences and LSTM. Multimedia Tools and Applications 2019; 78: 3979–3999.
  • Pektas A, Acarman T. Learning to detect Android malware via opcode sequences. Neurocomputing 2019; 396: 599-608.
  • Alzaylaee M K, Yerima S Y, Sezer S. DL-Droid: Deep learning based android malware detection using real devices. Computers and Security 2020; 89: 101663.
  • Feng J, Shen L, Chen Z, Wang Y, Li H. A two-layer deep learning method for Android malware detection using network traffic. IEEE Access 2020; 8: 125786-125796.
  • Altan G. SecureDeepNet-IoT: A deep learning application for invasion detection in industrial Internet of Things sensing systems. Transactions on Emerging Telecommunications Technologies 2021; 32(4): e4228.
  • Bakour K, Unver HM. DeepVisDroid: Android malware detection by hybridizing image-based features with deep learning techniques. Neural Computing and Applications 2021; 33: 11499–11516.
  • Vu LN, Jung S. AdMat: A CNN-on-matrix approach to Android malware detection and classification. IEEE Access 2021; 9: 39680-39694.
  • Kim J, Ban Y, Ko E, Cho H, Yi JH. MAPAS: A practical deep learning-based android malware detection system. International Journal of Information Security 2022; 21: 725-738.
  • Amer E, El-Sappagh S. Robust deep learning early alarm prediction model based on the behavioural smell for android malware. Computers and Security 2022; 116: 102670.
  • Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge: MIT Press, 2016.
  • Burkov A. The Hundred-Page Machine Learning Book Canada, 2019.
  • Altan G, Inat G. EEG-based spatial attention shifts detection using time-frequency features on empirical wavelet transform. Journal of Intelligent Systems with Applications, 2021, 4 (2):144-149.
  • Bulut E, Ozturk G, Kaya I. Classification of sleep stages via machine learning algorithms. Journal of Intelligent Systems with Applications 2022; 5(1): 66-70.
  • Pehlivan S, Isler Y. Detection of heart disease risk utilizing correlation matrix, random forest and permutation feature importance approaches. Journal of Intelligent Systems with Applications 2020; 3(1): 29-34.
  • Sayilgan E, Yuce YK, Isler Y. Frequency recognition from temporal and frequency depth of the brain-computer interface based on steady-state visual evoked potentials. Journal of Intelligent Systems with Applications 2022; 4(1): 68-73.