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Abstract—Cyber-attacks are one of the most critical problems
that seriously threaten society. Whereas there are various pre-
sentations and ways of carrying out cyber-attacks, numerous
mechanisms and techniques exist to defend applications. Many
malware creators have chosen the Android operating system as a
target due to its popularity. Thousands of new malware samples,
aiming to infect new devices daily, are trying to circumvent the
security measures implemented by Android app stores. This study
experiments with a multi-layer perceptron model for Android
malware detection. This proposed system is based on static
analysis techniques on Android. We analyzed popular machine
learning algorithms with a total number of 129013 applications
(5560 malicious and 123453 harmless software). We achieved
higher malware-detection rates of 97.60% in the iterations.

Keywords—Classification; multi-layer perceptron; malware de-
tection; cyber-attack; cyber-security; Android

Özetçe—Siber saldırılar, toplumu ciddi şekilde tehdit eden
son zamanların en kritik sorunlarından biridir. Siber saldırıları
gerçekleştirmenin çeşitli sunumları ve yolları olsa da, uygula-
maları savunmak için çok sayıda mekanizma ve yöntem mevcut-
tur. Birçok kötü amaçlı yazılımcı, popülaritesi nedeniyle Android
işletim sistemini hedef olarak seçmektedir. Her gün yeni cihazlara
erişmeyi amaçlayan binlerce yeni kötü amaçlı yazılım örneği, An-
droid uygulama mağazalarının uyguladığı güvenlik önlemlerini
atlatmaya çalışmaktadır. Bu çalışma, Android tabanlı çalışan
kötü amaçlı yazılım tespiti için çok katmanlı algılayıcı modeli
ile deneyler gerçekleştirmektedir. Önerilen bu sistem Android
üzerinde kullanılan statik analiz tekniklerine dayanmaktadır.
Popüler makine öğrenimi algoritmalarını toplam 129013 uygu-
lama (5560 kötü amaçlı ve 123453 zararsız yazılım) ile analiz
edilmiştir. İterasyonlarda %97,60’dan daha yüksek kötü amaçlı
yazılım algılama oranları elde edilmiştir.

Anahtar Kelimeler—Sınıflama; çok katmanlı algılayıcılar; kötü
amaçlı yazılım tespiti; siber atak; siber güvenlik; Android

I. INTRODUCTION

Cyber-attacks are the most common ways for hackers to
take over the whole or local controls of user and device
specifications. The widespread cyber-attacks focus on the ways

that are widespread regarding user and software vulnerability.
However, there are numerous mechanisms and techniques to
deal with them. Malware has undergone various changes since
its first release and has become a more complex structure for
developers and cyber-attackers.

Android operating system is frequently used on different
platforms, especially mobile devices. The overwhelming pref-
erence for the Android operating system has made it an
attractive target for attackers [1]. The open-source Android
platform may cause it to be considered insecure in applications.
Developers can easily access the Android source code and
publish various applications for the Android operating system.
This circumstance may cause some security vulnerabilities.
In addition, delays in security updates released by device
manufacturers also allow attacks [1].

There are many types of malware that target the Android
operating system. This malicious software can be listed as
spyware, backdoor, trojans, worms, ransomware, and botnets
[2]–[4]. Spyware is software that collects user-sensitive data,
tracks users, and shares this data with malicious people.
MobileSpy is the first professional spyware released on the
Android operating system [3]. Nowadays, spyware, which
has many alternatives, is preferred by politicians, people in
business, governments, and more. Spyware can be used to
obtain GPS locations, correspondence, and bank information
of individuals, as well as to obtain consumer habits for
customized advertisements [2]. Moreover, advanced artificial
intelligence algorithms are adapted to sensing systems in
IIoT networks for detecting malicious applications and various
cyber-attack from network traffic [17].

Backdoors are basically software that provides unauthorized
access to attackers, allowing unauthorized operations on in-
fected devices. Hummingbad, Damon, and FakeLook are some
backdoor scripts published for the Android operating system
[5].

Trojans are designed to gain the trust of users. Therefore,
they are usually prepared by analogy with reliable application
designs, logos, and colors. Social engineering is also used
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when designing trojan horses. Mobile applications and other
methods can infect trojans, such as movie or music files or
fake device updates. Trojan damages privacy and cause data
to be stolen.

Ransomware is software that encrypts files stored on devices
until payment is made. The encryption key is needed to
open files for use again. ScarePackage ransomware spread
to thousands of devices within 30 days and victimized many
people [4].

Botnets are large-scale network attacks that allow attackers
to control devices [6]. Botnets can be controlled by a Bot-
master and manipulate the device for various purposes. Bot-
nets can be used for Distributed Denial of Service (DDoS)
attacks, sending premium messages or spamming, and mining
applications for digital currencies. WireX malware spread to
more than 120,000 Android devices in 2017 and was used for
DDoS attacks [7], [8].

Various studies offer malware detection and classification
mechanisms by utilizing machine learning techniques. These
studies address the problem from two perspectives, depending
on static and dynamic analysis approaches. Static analysis has
been the subject of a significant amount of research due to the
fact that information is easy to obtain and contains information
that indicates application operations and intentions. In these
studies, package names, API calls, permissions, and metadata
are used as inputs to train classification models.

In a study conducted in 2017, an automated system based
on sequence classification was developed using deep learn-
ing techniques. Their system created API management calls.
The malware infections were detected correctly, with an f1-
score between 96% and 99%. In addition, the malware was
associated with virus families, with a false positive rate of
0.05%-2% [9]. In another study in 2017, a permission-based
Convolutional Neural Network (CNN) model was utilized to
detect malware. They used a total number of 2500 applications,
2000 malware, and 500 harmless software. Thanks to this
dataset, the malware was caught with an accuracy rate of 93%
[10].

In 2018, a multi-modal deep learning method was proposed
in the study using 41260 samples. This proposed study used
an entity-based or similarity-based feature extraction method
[11]. In another study in 2018, a deep learning-based system
was proposed using a control flow graph, data flow graph, and
their possible combinations. These flow graphs are coded to
form a matrix, and the classification model is trained via CNN
[12].

In 2019, a new method based on deep learning mechanisms
was proposed for malware detection. This proposed study
examines system calls as a kind of natural language, and
a sensor model is constructed using the Long Short-Term
Memory (LSTM) model [13]. In another study, the API call
graph presents all possible execution paths malware could
follow during runtime. They utilized a total number of 33139
malware and 25000 benign software in the proposal and
obtained an accuracy rate of 98.86% with different graphing
algorithms and network configuration parameters [14].

In 2020, a study based on deep learning was published
using more than 30000 applications. In their proposal, accuracy

rates of 97.8% and 99.6% were achieved using only dynamic
analysis and both dynamic-static analysis [15]. Another study
in 2020 proposed a two-layer method for detecting malware.
In the first layer, static features are combined with a fully
connected neural network, and an accuracy of 95.22% is
achieved. In the other layer, applications are examined over
network traffic. The detection rate was presented with an
accuracy rate of 99.3% using cascading CNN and AutoEncoder
[16].

On the other hand, image-based features and deep learn-
ing techniques were also discussed together. In this context,
the features obtained from the application were converted
to grayscale images. Four images were obtained for each
application, and a detection accuracy rate of over 98% was
achieved [18]. In another study, an adjacency matrix was
created for each application and sent to the CNN model as
input. They reached a malignant detection rate of 98% and a
malware family detection rate of 97% [19].

In 2022, a model was presented to analyze the behavior of
malicious applications based on API call graphs using CNN.
In this study, API call graphs were examined to increase ef-
ficiency, and classification was made using similarity between
graphs. In this proposed model, a success rate of 91.27% was
achieved [20]. Another study presented a behavioral Android
malware detection model. The LSTM model is used to classify
snapshots of reconstructed API and system call sequences in
the model based on various static and dynamic properties. This
study achieved a competitive accuracy rate, especially against
ransomware [21].

II. MATERIAL AND METHODS

A. DREBIN Dataset
The Drebin dataset consists of 123,453 benign and 5,560

malware. The features in the Drebin data set can be obtained by
static analysis. Every app developed for Android should con-
tain a manifest file named AndroidManifest.xml that contains
data supporting the application installation and subsequent
running. In addition, Android applications are developed in
programming languages such as Java and Kotlin and com-
piled into bytecode optimized for the Dalvik virtual machine.
Information about API calls and data in an application can
efficiently be obtained by extracting the bytecode from .dex
files. The data obtained by static analysis from the manifest file
and dex codes were collected under eight feature sets. These
eight features are described below.

Hardware components: This initial feature contains the
requested permissions to access hardware components. It may
cause certain security implications, as using certain combina-
tions of hardware often reflects malicious behavior.

Requested permissions: The permission system is one of
the most important Android security mechanisms. The user
actively grants permissions during installation or when the ap-
plication is launched after Android 6.0, allowing an application
to access security-related resources.

Application components: An android application can reach
four components to grant system activities interfaces. They
are activities, services, content providers, and recipients. Each
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component was collected as the name lists. According to the
blocklist, each name was manipulated as malicious and normal
to identify well-known malware components.

Filtered intents: Inter-process and intra-process communica-
tion in Android is mainly done with intent. Because malware
usually listens for specific intents, all intents listed in the
manifest have been collected as another set of features.

Restricted API calls: The Android permission system re-
stricts access to several critical API calls. A particular case
that introduces malicious behavior is the restricted API calls
where the required permissions are not requested.

Used permissions: All of the calls issued in restricted API
calls can be used as grounds to determine the subset of both
requested and used permissions. Unlike the restricted API
calls, this feature set provides a more general view of an
application’s behavior, as multiple API calls can be protected
with a single permission.

Suspicious API calls: Certain API calls similar to malware
have the possibility to reach private data and resources in
the mobile device. Because the requested calls can treat as
particularly malicious behavior, it is collected as a separate
feature in the Drebin dataset.

Network addresses: The malicious applications regularly
utilize network connections. It may receive and requests
commands or leak private data using an internet connection.
Therefore, all IP addresses, host names, and URLs requested
by the Android application are included as a feature set. Some
of these addresses may be included in botnets.

Since most learning methods work on numeric vectors, the
extracted features were manipulated in a vector space.

B. The Multi-Layer Perceptron (MLP)
The Multi-Layer Perceptron (MLP) is a feed-forward neural

network algorithm suitable for classification and regression.
This network can be expressed as follows:

y = f (−→x ) (1)

Where y ∈ Rm is the expected output of the network and −→x ∈
Rn is the input. The building block of MLP is perceptron. A
perceptron is a mathematical model used to represent a neuron.
Based on the input −→x ∈ Rn and its parameters and the weights−→ω ∈ Rn and bias b ∈ R, the internal potential of the sensor
is calculated as follows:

ζ = −→ω • −→x + b =
n∑

i=1

(ωi • xi) + b =
n∑

i=0

(ωi • xi) (2)

Based on the internal potential, the output of the y detector is
expressed as:

y = a (ζ) (3)

using the activation function "a". Here, functions such as
Rectified Linear Units (ReLU), Scaled Exponential Linear
Units (SeLU), and hyperbolic tangent can be used as activation
functions [22].

The sensors can be organized in layers to form a feed-
forward network. An example of such a network is shown
in Figure 1. Networks usually have three possible types of

Figure 1: An MLP architecture with three layers and three
neurons in the hidden layer

layers. These are an input layer, hidden layers, and an output
layer. Except for the input layer, the sensors of each layer
are connected to all sensors in the previous layer. As a result,
the output function f(•) of the network can be thought of
as an indexed, recurrent function, given below, which these
equations hold:

y = fL (−→x ) (4)

fl (
−→x ) = al (Wl • fl−1 (

−→x )) (5)

f1 (
−→x ) = −→x (6)

Where al and fl, represent the activation function and output
function for the lth layer, and Wl, represents the matrix of
weights to the lth layer. We can also show the output and
internal potential of each layer in the given order as follows:

yl = fl (
−→x ) = al (Wl • yl−1) (7)

ζl = Wl • yl−1 (8)

The goal of training the network is to minimize the error in
the training data by adjusting the weights. Therefore, a cost
function C, such as cross-entropy, is used to calculate the error.

To find the optimal weights, ∂C
∂Wl

must be calculated.
The main advantage of MLPs is that they scale well with

more training data and have expressive power. But they are
black boxes, and it isn’t easy to find the optimal configuration
with many possible architectures and hyperparameter tuning
[23], [24], [25].

III. EXPERIMENTAL RESULTS

Designing malware detection tools requires representative
groups of both benign and malware. The classifier uses the
feature vector of the application to be analyzed as input. It
gives the probability of belonging to a group. In this study,
the application to be analyzed first is processed precisely, and
feature vectors are created by static analysis. We calculated
statistical test metrics, including overall accuracy, precision,
recall, f-measure, and true negative rate, for the proposed MLP
models to evaluate the system malware detection performance
[26], [27].

Static analysis tries to explain the behavior of mobile
applications by checking for a set of predetermined features.
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Threshold Malware Detection Performances in terms of various threshold values (%)

Accuracy Precision Recall f-measure False Positive
Rate (FPR)

False Negative
Rate (FNR)

True Negative
Rate (TNR)

0.4 97.00 93.12 34.53 50.38 0.11 65.46 99.88
0.5 97.26 85.76 44.85 58.90 0.34 55.14 99.65
0.6 97.32 72.58 64.11 68.08 1.12 38.88 98.87
0.7 97.38 90.18 43.91 59.06 0.21 56.08 99.78
0.8 97.51 83.67 54.09 65.70 0.48 45.91 99.51
0.9 97.68 77.93 64.47 70.57 0.82 35.52 99.17

Table I: Perception model performance at different threshold values

From this assumption, a depiction of behavior that can be
attributed to malicious or harmless software of a particular
subset of features will emerge. Properties obtained by static
analysis can be expressed as numerical and/or binary variables.
After extracting the feature set, such as requested permissions,
initiated API calls, or intent, the resulting data is used to create
the feature vector.

These feature vectors are given as input to the deep neural
network, as indicated in Figure 2. The MLP model with
multiple hidden layers is used in the proposal. After composing
the hidden layers, the generated hidden vectors are transferred
to a ReLU activation layer to detect the relationship between
features in the classification. The ReLU layer adds the calcu-
lated weights and biases and assigns a probability value for
each class. It takes the higher probability result to assign the
classification result.

However, the ReLu layer may produce low values in case
the feature vectors do not provide enough data to provide
unreliable results. In the model created to provide reliable
detection results, a threshold is added above the ReLU layer,
and inputs below this threshold are classified with a temporary
label called ambiguous.

The detection performances for the proposed MLP models
with different threshold values are presented in Table I. When
the threshold value was set to 0.4, an accuracy rate of 97.00%
and a true negative rate of 99.88% were reached. When the
threshold value was increased from 0.5 to 0.9, the malware de-
tection accuracy increased by 97.26% to 97.68%. It has filtered
out unreliable classification and provides higher performance.

IV. CONCLUSION

Mobile devices have become ubiquitous in our lives, pro-
viding almost the same functions as personal information
processing systems. In recent years, malware developers pri-
marily target the Android platform for different reasons. The
contribution of this study to the literature is that it presents
a new detection system with the help of the multi-layer
perceptron model, using the information obtained by static
analysis. The Drebin dataset can detect malicious scripts with
an accuracy rate of 97.68% in the proposed model.
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