Flag Counter
AKILLI SİSTEMLER VE UYGULAMALARI DERGİSİ
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Classification of Multi-Class Motor Imaginary Tasks using Poincare Measurements Extracted from EEG Signals

EEG Sinyallerinden Çıkarılan Poincare Ölçümlerini Kullanarak Çok Sınıflı Motor Hayali Görevlerin Sınıflandırılması

How to cite: Değirmenci M, Yüce YK, İşler Y. Classification of multi-class motor imaginary tasks using poincare measurements extracted from eeg signals. Akıllı Sistemler ve Uygulamaları Dergisi (Journal of Intelligent Systems with Applications) 2022; 5(2): 74-78.

Full Text: PDF, in English.

Total number of downloads: 663

Title: Classification of Multi-Class Motor Imaginary Tasks using Poincare Measurements Extracted from EEG Signals

Abstract: Motor Imaginary (MI) electroencephalography (EEG) signals are generated with the recording of brain activities when a participant imagines a movement without physically performing it. The correct decoding of MI signals have been became an important task due to the application of these signals in the rehabilitation process of paralyzed patients in recent studies. However, the decoding of the these signals is still an evolving challenge in the design of a brain-computer interface (BCI) system. In this study, a machine learning based approach using Poincare measurements from non-linear measurements of MI EEG signals is proposed for classification of four-class MI tasks. The m-lagged Poincare plots were used to extract non-linear features and m is set to be values from 1 to 10. The performances of feature vectors which are extracted from 10 lag values and feature vector which is the combinations of these vectors were investigated separately in experimental evaluation section. The 24 different typical classification algorithms were tested in differentiating MI tasks using 5-fold cross-validation. Each of the these algorithms tested 10 times to analyzed the repeatability of the experimental results. The highest classifier performance of 47.08% among these 11 feature vectors was achieved over the combination feature vector that includes all lag values features using Quadratic Support Vector Machine (SVM). According to average accuracy value of 24 classifiers in 11 feature vector, the most discriminative feature set is 9th vector that consists of features extracted when lag value defined as 9. As a result, the innovative aspect of this study is the application of Poincare plots, one of the nonlinear feature extraction methods, in motor imaginary task classification.

Keywords: Brain-computer interface; EEG signals; Machine learning; Motor imaginary task classification; Poincare plot


Başlık: EEG Sinyallerinden Çıkarılan Poincare Ölçümlerini Kullanarak Çok Sınıflı Motor Hayali Görevlerin Sınıflandırılması

Özet: Motor Hayali (MH) elektroensefalografi (EEG) sinyalleri, bir katılımcı fiziksel olarak gerçekleştirmeden bir hareketi hayal ettiğinde beyin aktivitelerinin kaydedilmesiyle üretilir. Son yıllarda yapılan çalışmalarda bu sinyallerin felçli hastaların rehabilitasyon sürecinde uygulanması nedeniyle MH EEG sinyallerinin doğru çözümlenmesi önemli bir görev haline gelmiştir. Bununla birlikte, bu sinyallerin kodunun çözülmesi, bir beyin-bilgisayar arayüzü (BBA) sisteminin tasarımında hala gelişen bir zorluktur. Bu çalışmada, dört sınıflı MH görevlerinin sınıflandırılması için MH EEG sinyallerinin doğrusal olmayan ölçümlerinden Poincare ölçümlerini kullanan makine öğrenmesi tabanlı bir yaklaşım önerilmiştir. M-gecikmeli Poincare grafikleri, doğrusal olmayan öznitelikleri çıkarmak için kullanıldı ve m, 1'den 10'a kadar olan değerler olacak şekilde ayarlandı. 10 gecikme değerinden elde edilen öznitelik vektörleri ile bu vektörlerin birleşimi olan öznitelik vektörünün performansları deneysel değerlendirme bölümünde ayrı ayrı incelenmiştir. 24 farklı tipik sınıflandırma algoritması, 5 kat çapraz doğrulama kullanılarak MI görevlerinin ayırt edilmesinde test edilmiştir. Bu algoritmaların her biri, deneysel sonuçların tekrarlanabilirliğini analiz etmek için 10 defa test edildi. Bu 11 öznitelik vektörü arasında 47,08% ile en yüksek sınıflandırıcı performansı, Kuadratik Destek Vektör Makinesi (DVM) kullanılarak tüm gecikme değerleri özniteliklerini içeren kombinasyon öznitelik vektörü üzerinden elde edilmiştir. 11 öznitelik vektöründe 24 sınıflandırıcının ortalama doğruluk değerine göre en ayırt edici öznitelik seti, gecikme değeri 9 olarak tanımlandığında çıkarılan özniteliklerden oluşan 9. vektördür. Sonuç olarak, bu çalışmanın yenilikçi yönü, doğrusal olmayan öznitelik çıkarma yöntemlerinden biri olan Poincare çizimlerinin motor hayali görev sınıflandırmasında uygulanmasıdır.

Anahtar kelimeler: Beyin-bilgisayar arayüzü; EEG sinyalleri; Makine öğrenmesi; Motor hayali görev sınıflandırması; Poincare çizimi


Bibliography:
  • Birbaumer N. Slow cortical potentials: Plasticity, operant control, and behavioral effects. The Neuroscientist 1999; 5(2): 74-78.
  • Hoffmann U, Vesin JM, Ebrahimi T, Diserens K. An efficient P300-based brain–computer interface for disabled subjects. Journal of Neuroscience Methods 2008; 167(1): 115-125.
  • Degirmenci M, Sayilgan E, Isler Y. Evaluation of wigner-ville distribution features to estimate steady-state visual evoked potentials' stimulation frequency. Journal of Intelligent Systems with Applications 2021; 4(2): 133-136.
  • Sayilgan E, Yuce YK, Isler Y. Frequency recognition from temporal and frequency depth of the brain-computer interface based on steady-state visual evoked potentials. Journal of Intelligent Systems with Applications 2021; 4(1): 68-73.
  • Sayilgan E, Yuce YK, Isler Y. Evaluation of mother wavelets on steady-state visually-evoked potentials for triple-command brain-computer interfaces. Turkish Journal of Electrical Engineering & Computer Sciences 2021; 29(5): 2263-2279.
  • Sayilgan E, Yuce YK, Isler Y. Investigating the effect of flickering frequency pair and mother wavelet selection in steady-state visually-evoked potentials on two-command brain-computer interfaces. Innovation and Research in BioMedical Engineering 2022; IN PRESS.
  • Sayilgan E, Yuce YK, Isler Y. Evaluation of wavelet features selected via statistical evidence from steady-state visually-evoked potentials to predict the stimulating frequency. Journal of the Faculty of Engineering and Architecture of Gazi University 2021; 36(2): 593-605.
  • Sayilgan E, Yuce YK, Isler Y. Determining gaze information from steady-state visually-evoked potentials. Karaelmas Science and Engineering Journal 2020; 10(2): 151-157.
  • Sayilgan E, Yuce YK, Isler Y. Estimation of three distinct commands using Fourier transform of steady-state visual-evoked potentials. Duzce Universitesi Bilim ve Teknoloji Dergisi 2020; 8(4): 2337-2343.
  • Musallam YK, AlFassam NI, Muhammad G, Amin SU, Alsulaiman M, Abdul W, Altaheri H, Bencherif MA, Algabri M. Electroencephalography-based motor imagery classification using temporal convolutional network fusion. Biomedical Signal Processing and Control 2021; 69: 102826.
  • Keerthi Krishnan K, Soman KP. CNN based classification of motor imaginary using variational mode decomposed EEG-spectrum image. Biomedical Engineering Letters 2021; 11(3): 235-247.
  • Altan G, Inat G. EEG based spatial attention shifts detection using time-frequency features on empirical wavelet transform. Journal of Intelligent Systems with Applications 2021; 4(2): 144-149.
  • Cetin E, Bilgin G, Bilgin S, Bicer Gomceli Y, Kayikci AM. Investigation of hunger and satiety status during eyes open and closed using EEG signals. Journal of Intelligent Systems with Applications 2020; 3(1): 35-38.
  • Ozsandikcioglu U, Atasoy A, Kablan Y, Sevim Y, Aykut M. Comparison of dimension reduction algorithms on EEG signals. Journal of Intelligent Systems with Applications 2018; 1(2): 140-144.
  • Degirmenci M, Yuce YK, Isler Y. Motor imaginary task classification using statistically significant time-domain EEG features. In 2022 30th Signal Processing and Communications Applications Conference (SIU), May 16-18, 2022, Safranbolu, Turkey, ACCEPTED.
  • Djamal EC, Abdullah MY, Renaldi F. Brain computer interface game controlling using fast fourier transform and learning vector quantization. Journal of Telecommunication, Electronic and Computer Engineering (JTEC) 2017; 9(2-5): 71-74.
  • Chaudhary S, Taran S, Bajaj V, Siuly S. A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications. Computer Methods and Programs in Biomedicine 2020; 187: 105325.
  • Ha KW, Jeong JW. Motor imagery EEG classification using capsule networks. Sensors 2019; 19(13): 2854.
  • Blanco-Diaz CF, Antelis JM, Ruiz-Olaya AF. Comparative analysis of spectral and temporal combinations in CSP-based methods for decoding hand motor imagery tasks. Journal of Neuroscience Methods 2022; 371: 109495.
  • Ang KK, Chin ZY, Wang C, Guan C, Zhang H. Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Frontiers in Neuroscience 2012; 6: 39.
  • Isler Y. A Detailed Analysis of the Effects of Various Combinations of Heart Rate Variability Indices in Congestive Heart Failure, PhD Thesis, Dokuz Eylul University, 2009.
  • Isler Y, Kuntalp M. Combining classical HRV indices with wavelet entropy measures improves to performance in diagnosing congestive heart failure. Computers in Biology and Medicine 2007, 37(10): 1502-1510.
  • Narin A, Isler Y, Ozer M. Investigating the performance improvement of HRV Indices in CHF using feature selection methods based on backward elimination and statistical significance. Computers in Biology and Medicine 2014; 45: 72-79.
  • Isler Y, Narin A, Ozer M, Perc M. Multi-stage classification of congestive heart failure based on short-term heart rate variability. Chaos, Solitons & Fractals 2019; 118: 145-151.
  • Cancioglu E, Sahin S, Isler Y. Fault detection and diagnosis on process control systems using ensemble learning algorithms from Poincare plot measures. European Journal of Science and Technology 2021; Ejosat Special Issue (HORA): 30-34.
  • Isler Y, Kuntalp M. Diagnosis of congestive heart failure patients using Poincare measures derived from ECG signals. XV. Biyomedikal Mühendisliği Ulusal Toplantısı BIYOMUT 2009, May 20-22, Izmir, Turkey, pp. 267-270.
  • Hart PE, Stork DG, Duda RO. Pattern Classification, A Wiley-Interscience Publication, 2001.
  • Brunner C, Leeb R, Muller-Putz G, Schlogl A, Pfurtscheller G. BCI Competition 2008–Graz data set A. Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology 2008; 16: 1-6.
  • Kato M, Kanoga S, Hoshino T, Fukami T. Motor imagery classification of finger motions using multiclass CSP. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), July 20-24, 2020, Montreal, QC, Canada, pp. 2991-2994.
  • Jusas V, Samuvel SG. Classification of motor imagery using combination of feature extraction and reduction methods for brain-computer interface. Information Technology and Control 2019; 48(2): 225-234.
  • Nguyen T, Hettiarachchi I, Khatami A, Gordon-Brown L, Lim CP, Nahavandi S. Classification of multi-class BCI data by common spatial pattern and fuzzy system. IEEE Access 2018; 6: 27873-27884.