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Abstract—Motor Imaginary (MI) electroencephalography hayal ettiginde beyin aktivitelerinin kaydedilmesiyle iiretilir. Son

(EEG) signals are generated with the recording of brain activities
when a participant imagines a movement without physically
performing it. The correct decoding of MI signals have been
became an important task due to the application of these signals
in the rehabilitation process of paralyzed patients in recent
studies. However, the decoding of the these signals is still an
evolving challenge in the design of a brain-computer interface
(BCI) system. In this study, a machine learning based approach
using Poincare measurements from non-linear measurements of
MI EEG signals is proposed for classification of four-class MI
tasks. The m-lagged Poincare plots were used to extract non-
linear features and m is set to be values from 1 to 10. The
performances of feature vectors which are extracted from 10
lag values and feature vector which is the combinations of these
vectors were investigated separately in experimental evaluation
section. The 24 different typical classification algorithms were
tested in differentiating MI tasks using 5-fold cross-validation.
Each of the these algorithms tested 10 times to analyzed the
repeatability of the experimental results. The highest classifier
performance of 47.08% among these 11 feature vectors was
achieved over the combination feature vector that includes all
lag values features using Quadratic Support Vector Machine
(SVM). According to average accuracy value of 24 classifiers in
11 feature vector, the most discriminative feature set is 9th vector
that consists of features extracted when lag value defined as 9. As
a result, the innovative aspect of this study is the application of
Poincare plots, one of the nonlinear feature extraction methods,
in motor imaginary task classification.

Keywords—brain-computer interface; EEG signals; machine
learning; motor imaginary task classification; poincare plot

Ozetce—Motor Hayali (MH) elektroensefalografi (EEG) sinyal-
leri, bir katilma fiziksel olarak gerceklestirmeden bir hareketi

yillarda yapilan calismalarda bu sinyallerin fel¢li hastalarin
rehabilitasyon siirecinde uygulanmasi nedeniyle MH EEG sinyal-
lerinin dogru c¢oziimlenmesi onemli bir gorev haline gelmistir.
Bununla birlikte, bu sinyallerin kodunun coziilmesi, bir beyin-
bilgisayar arayiizii (BBA) sisteminin tasariminda hala gelisen bir
zorluktur. Bu cahsmada, dort ssmfli MH gorevlerinin siniflandiril-
masi icin MH EEG sinyallerinin dogrusal olmayan dl¢iim-
lerinden Poincare olciimlerini kullanan makine 6grenmesi ta-
banh bir yaklasim onerilmistir. M-gecikmeli Poincare grafik-
leri, dogrusal olmayan oznitelikleri ¢cikarmak icin kullamildi ve
m, 1’den 10’a kadar olan degerler olacak sekilde ayarlandi.
10 gecikme degerinden elde edilen 6znitelik vektorleri ile bu
vektorlerin birlesimi olan 6znitelik vektoriiniin performanslari
deneysel degerlendirme béliimiinde ayr1 ayri incelenmistir. 24
farkh tipik simiflandirma algoritmasi, 5 kat capraz dogrulama
kullamlarak MI gorevlerinin ayirt edilmesinde test edilmistir.
Bu algoritmalarin her biri, deneysel sonuclarin tekrarlanabilir-
ligini analiz etmek icin 10 defa test edildi. Bu 11 oznitelik
vektorii arasinda 47,08 % ile en yiiksek simflandirici performansi,
Kuadratik Destek Vektor Makinesi (DVM) kullamilarak tiim
gecikme degerleri ozniteliklerini iceren kombinasyon o6znitelik
vektorii iizerinden elde edilmistir. 11 o6znitelik vektoriinde 24
smiflandiricinin ortalama dogruluk degerine gore en ayirt edici
oznitelik seti, gecikme degeri 9 olarak tammlandiginda cikarilan
ozniteliklerden olusan 9. vektordiir. Sonuc¢ olarak, bu cahsmanin
yenilik¢i yonii, dogrusal olmayan oznitelik cikarma yontem-
lerinden biri olan Poincare cizimlerinin motor hayali gorev
smiflandirmasinda uygulanmasidir.

Anahtar Kelimeler—beyin-bilgisayar arayiizii; EEG sinyalleri;
makine ogrenmesi; motor hayali gorev simiflandirmasi; poincare
cizimi
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I. INTRODUCTION

Brain-computer interface (BCI) sytems utilize brain signals
generated based on different physiological processes such
as slow cortical potentials, sensorimotor rhythms [1], P300
potentials [2], visual-evoked potentials (VEPs), and steady-
state visual-evoked potentials (SSVEPs) [3]-[9] to supply
control over the environment using a computer. One paradigm
utilized in BCIs is the imagination of motor activity which
generates variations on the power of electroencephalography
(EEG) signals recorded over the motor cortex. The processing
of the motor imaginary (MI) EEG signals plays an important
role in the design of BCI systems due to the use of these signals
in the rehabilitation process of paralyzed patients in recent
studies [10]-[14]. However, the non-linear, non-stationary and
low signal-to-noise ratio structure of EEG signals make the
processing of these signals a difficult task. Therefore, effective
signal processing methods have become an essential tool to
differentiate MI tasks.

In last decades, traditional machine learning based ap-
proaches have been commonly used to classify MI EEG data.
The processing of MI EEG signals in traditional methods
consists of three main phase: preprocessing of signals, feature
extraction, and classification [15]. The preprocessing phase
includes some definite and significant processes of channel
selection, signal filtering, signal normalization, and artifact
removal. In traditional feature extraction processes, the hand-
crafted features are extracted from MI EEG signals. The
different types of features are generated based on domain infor-
mation of signals which the signal is processed. These features
were separated in three main groups based on their process-
ing domain: temporal features, spectral features and spatial
features. Temporal features are generated from time-domain
utilizing time segments and time points of EEG signals such
as mean value, skewness, kurtosis, variance, Hjorth parameters
and root mean square value [15]. Spectral features categorized
as frequency-domain based features which are power spectrum
density (PSD) and Fast Fourier transform (FFT) [16], or time-
frequency domain features which are Wavelet Transform (WT)
[17] and short-time Fourier transform (STFT) [18]. In last
decades, the most of the studies have been drawn on spatial-
domain, the common spatial pattern (CSP) [19] and derivatives
of it [20] were mainly used to extract spatial EEG features. In
recent studies, it was observed that nonlinear measurements,
which were effective in examining different physiological
signals, have not been utilized to classify MI tasks. Poincare
plot measurements are one of the non-linear measurements of
physiological signals which is a popular technique due to its
simple visual interpretation and its proved clinical ability as
a predictor of disease and cardiac dysfunction [21]-[24]. The
effect of Poincare plot measurements have not been analyzed
to differentiate MI tasks. Considering its performance in other
applications [25], [26], it can be an alternative method to
the nonlinear structure that complicates the analysis of EEG
signals in MI task classification.

In this study, a feature extraction method based on Poincare
plot which is one of the non-linear measure technique and
machine learning algorithms is proposed the differentiate MI
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tasks. The experimental process were conducted on 22-channel
MI EEG signals for four-class MI task classification.

II. MATERIALS & METHODS
A. Dataset

The publicly available an international BCI Competition
IV Dataset-Ila were used to test the proposed method [28].
BCI Competition IV Dataset-I1a includes 22 EEG signals of 9
participants (4 female and 5 male). The experiment is designed
as cue-based BCI paradigm including four different motor
imagery tasks which are the imagination of movement of the
left hand (class 1), right hand (class 2), both feet (class 3), and
tongue (class 4). EEG signals were collected as two sessions
on different days. 6 runs are available in each sessions and
runs were extracted with short breaks. Each runs include 48
trials in total, with 12 trials for each class. The experimental
process yields a total of 288 trials for per subject. In EEG data
recording, twenty-two Ag/AgCl electrodes were utilized. The
sampling with 250 Hz and bandpass-filter between 0.5 Hz and
100 Hz processes were applied to EEG signals in preprocessing
section. And, the line noise was eliminated using application
of 50 Hz notch filter. EEG segments where MI tasks are
performed were separated from signals in preprocessing of this
study.

B. Poincare Plot Measures

Poincare plot measurements are known as an one of the non-
linear measurements of EEG signals that used to represent the
nonlinear dynamics inherent in the signal. It is a drawing where
each EEG (z;) data is placed on the x-axis and the following
(Ti41ag) interval is placed on the y-axis [21]. Poincare plot was
used to extract features in analysis of different type of biomed-
ical signals due to its simple visual interpretation and proved
clinical ability [21]-[24]. The effect of the Poincare plot-based
feature extraction process for MI EEG signal classification was
investigated in the proposed study based on the positive aspects
in the literature. Poincare drawings were created using raw MI
EEG signals. An ellipse is fitted the Poincare plot’s scheme
and the standard deviation of the points on the plot denotes
the width of the ellipse (SD7) and the length of the ellipse
(SDy) [21].

The Poincare plot measures are mathematically computed
using the following equations. The two interval vector repre-
sented in Equations (1)—(2) and the measurements of SD; and
S Dy were calculated using Equations (3)—(4) based on these
intervals. Then, the four different Poincare plot measurements
were calculated in the feature extraction process [21]:

Ty = (x(]uxh'"vXme) (1)
Litlag = (wmaxnﬂrla 7XN) (2)
CCi+lag — Ty
Ty = ——Z
V2
S Titlag T T4 3)

V2
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[ Models lag=1  lag=2 lag=3 lag=4 lag=5 lag=6 lag=7 lag=8 lag=9 lag=10 all lags |
Fine Tree 29.10 30.10 29.60 29.30 29.40 30.60 30.50 31.40 31.30 31.10 31.90
Medium Tree 28.80 28.40 29.60 29.30 28.30 28.20 29.00 30.70 31.50 30.80 30.20
Coarse Tree 28.00 27.50 27.00 28.90 28.10 27.50 28.70 27.90 28.40 29.40 27.90
Linear Discriminant Analysis 40.00 40.50 40.00 41.70 40.10 41.90 42.70 42.30 42.70 41.70 40.20
Quadratic Discriminant 35.70 36.50 37.40 39.20 37.20 37.70 35.80 36.60 36.30 36.10 Failed
Gaussian Naive Bayes 26.80 27.40 27.90 28.30 27.90  29.00 28.00  28.00  28.90 28.40 28.30
Kernel Naive Bayes 26.80 28.30 27.90 28.60 28.00 28.50 27.90 28.20 30.00 27.90 28.20
Linear Support Vector Machine 37.17 38.97 39.06 39.96 39.92 40.56 40.95 41.51 41.86 40.71 42.96
Quadratic Support Vector Machine 41.01 43.16 44.30 4451 42.98 43.07 44.36 44.48 43.41 43.78 47.08
Cubic Support Vector Machine 39.07 40.50 41.57 40.33 41.21 41.62 41.77 42.38 42.14 41.24 44.47
Fine Gaussian Support Vector Machine 3140  31.80 3390 3470 3320 3280 3470 3410  34.60 34.60 33.50
Medium Gaussian Support Vector Machine 30.60 32.10 33.90 35.10 34.10 36.10 35.60  36.10  38.00 36.60 35.90
Coarse Gaussian Support Vector Machine 28.90 28.50 28.20 29.60 29.60 30.50 31.00 30.90 32.20 30.80 29.30
Fine K-Nearest Neighbours 30.70 29.90 29.10 31.40 31.40 29.90 32.00 31.20 30.80 31.30 30.60
Medium K-Nearest Neighbours 30.80 29.40 30.30 30.90 30.20 30.40 29.90 31.50 31.40 31.50 30.00
Coarse K-Nearest Neighbours 29.70 29.80 31.20 32.40 29.90 30.70 31.40 32.30 33.00 31.40 30.60
Cosine K-Nearest Neighbours 32.20 32.10 32.50 31.90 32.10 32.40 32.20 33.30 33.10 32.30 32.30
Cubic K-Nearest Neighbours 29.80 29.20 30.50 30.40 30.50 31.10 30.90 31.00 31.90 32.60 31.90
Weighted K-Nearest Neighbours 29.90 29.90 30.40 31.30 31.10 30.40 30.50 31.40 32.30 33.00 31.40
Ensemble Boosted Trees 30.10 28.50 30.00 31.70 29.00 28.80 29.30 32.10 32.60 31.30 32.80
Ensemble Bagged Trees 32.18 32.84 33.16 32.70 32.20 32.96 33.37 33.00 34.12 34.00 34.18
Ensemble Subspace Discriminant 39.59 41.20 41.53 42.08 40.19 42.17 42.84 42.94 43.42 42.27 46.06
Ensemble Subspace K-Nearest Neighbours 28.14 30.88 29.98 31.05 31.28 31.40 30.60 29.93 30.67 29.32 29.70
Ensemble RUSBoosted Trees 28.74 28.64 27.90 31.10 28.24 28.31 28.78 30.84 31.70 31.23 30.31
Average 31.88 3238 3272 3365 3276 33.19 3345 3392 3443 33.89 33.91

Table I: Multi-class motor imaginary task classification results of feature vectors extracted from each lag values based on average

accuracy values (%) of 10 tests.

SD, =
SD; =

SD(z,)
SD(xs) “)

SD denoted the standard deviation of the extracted time
interval vectors. The different intervals created using m-lagged
Poincare plot measurements for this study. The measurements
of SD; and SD, were calculated for lag=m. In the study,
set m from 1 to 10. In addition to measurements of SD;
and SDs , the product (SD15D-) and the ratio (SD1/5D53)
were calculated to examine the relationships between these
components.

As a result, the four different Poincare plot measures were
extracted for each EEG channels and total of 88 feature
obtained for each EEG signal. 288x88 (number of trials x
number of features) feature vector was obtained for each
subject. Then, 2592x88 feature vector was created from 9
subjects for each lag value.

C. Classification

The 11 feature vectors were obtained from MI EEG signals.
10 of these feature vectors were created for each 10 lag
value separately and the last vector consists of combination
of these 10 lag feature vectors. The classification process
conducted on each feature vector separately. Train and test
data groups were created splitting feature vectors based on
5-fold cross-validation. The performances of each feature
vector evaluated with various machine learning algorithms.
The multi-class (right hand, left hand, feet, and tongue) MI
tasks classification process computed drawing on 24 different
classifier algorithms which are commonly used in the literature
[27]. The repeatability of the classification results examined

testing each classification algorithms 10 times. Performance
evaluations were carried out based on true positives (TP),
(true negatives) TN, false positives (FP) and false negatives
(FN) values which were obtained from confusion matrices. The
performance metrics of accuracy, specificity and sensitivity
were calculated to investigate performance of different tests.
The calculation of these metrics computed using following
equations:

TP+TN
Accuracy(%) = TPLTN fFP 1 FN x 100 (5)
TP
TN

III. EXPERIMENTAL RESULTS

In this study, a machine learning based approach using
Poincare plot measures was introduced to classify four dif-
ferent MI tasks. The feature extraction and classification pro-
cesses in the study were carried out in MATLAB application.
The m-lagged Poincare plot measurements were computed and
m set from 1 to 10 for feature extraction process. Poincare plot
measurements generated the four different non-linear features
from EEG signals. A feature vectors were extracted from each
of 10 lag values and the combination of these vectors that
includes all lag features was created. A total of 11 feature
vectors were created in the feature extraction phase. These
vectors were evaluated separately to investigate the effects of
the different lag values and combination of them. These vec-
tors were classified with 24 different classification algorithm
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Number of

ACC SEN SPE

Study Dataset Channels Feature extraction Feature selection Classes Classifier (%) (%) (%)
- Left  hand, . N
[15] BCL Competition ), pp Time-domain features ~ ANOVA Right hand, Linear Discriminant ) 00 4450 4431
IV Dataset-1Ia Analysis
Feet, Tongue
[29] MISCP 21 EEG Multi-class CSP N/A Five fingers SVM 40.60 N/A N/A
BCI Competition Principal Left hand,
[30] v Dataseg a 8 EEG FFT, Channel Variance Component Right hand, Least Squares SVM 56.00 N/A N/A
Analysis Feet, Tongue
BCI Competition L§tt hand, .
[31] IV Dataset.ITa 22 EEG CSp N/A Right hand,  Fuzzy Logic System 65.00 N/A N/A
Feet, Tongue
. BCI Competition . L§ft hand, .
This study 22 EEG Poincare plot measures N/A Right hand,  Quadratic SVM 47.08 47.13 47.15

IV Dataset-1la

Feet, Tongue

Table II: Comparison of multi-class motor imaginary task classification studies with the results of the proposed study. ACC,
SEN, and SPE are the accuracy, sensitivity, and specificity, respectively.

based 5-fold cross-validation technique. Each classification
algorithms tested 10 times and average accuracy values of
these tests were calculated. The average accuracy values of 10
tests were evaluated for 24 different classification algorithms
over 11 feature vectors and experimental results are given in
the Table I. Experimental results represented that the maximum
average accuracy value of 47.08% achieved using Quadratic
Support Vector Machine (SVM) classifier over 11th feature
vector that includes the features of all lags.

IV. DISCUSSION AND CONCLUSION

The aim of this study is to investigate the effects of the
non-linear features on multi-task classification. The Poincare
measurements were used to extract non-linear features based
on 10 different lag values. The effect of 11 different feature
vectors on classifiers performance was investigated separately.
In Table I, the performance effect of lag values on 24 different
classifiers is given based on the average accuracy values. The
results in Table I demonstrated that the maximum average ac-
curacy values were obtained in 2 classifiers from lag=4 feature
vector, 2 classifiers from lag=6 feature vector, 3 classifiers from
lag=7 feature vector, 2 classifiers from lag=8 feature vector, 7
classifiers from lag=9 feature vector, 4 classifiers from lag=10
feature vector, 7 classifiers from feature vector including all lag
features. In this study, the maximum classification performance
was calculated to be 47.08% with the combination vector of the
extracted features using 10 lag values. Although the maximum
classification success was achieved in the combination vector,
it was observed that the maximum classification accuracy value
was achieved in the vectors obtained from only a single lag
value in 20 classifiers in the tests computed on 11 feature
vectors. When the results are examined, the most effective
and successful feature vector among the vectors obtained
from a single lag value consists of the features extracted by
determining the lag value as 9. Also, the average accuracy
values of 24 different classifiers were calculated for each of
the 11 feature vectors and the maximum average accuracy was

calculated as 34.43% over feature vector consists of lag=9
features.

This study is compared with machine learning studies that
performed multi-class motor imaginary task classification and
the results with detail information about studies are given in
Table II. It has been observed that classification performances
are achieved at lower rates in multi-task classification than
in binary classification especially for machine learning based
studies. In [30], channel reduction process was computed and
8 EEG channel was used to extract features. Also, the different
combinations of feature extraction methods with effective
feature selection methods was tested to obtain highest accuracy
value. Based on the results of these studies, it has been
concluded that the performances of the proposed study can
be improved in further studies by determining the effective
channels and using effective feature selection methods.

The main contributions of the proposed study can be high-
lighted as follows:

e We propose a non-linear feature extraction method com-
puting Poincare plot measurements of EEG signals to
classify multi-class MI task classification.

e We investigate the performance effect of the different 10
lag values separately.

e The multi-directional analyzes are performed in which
24 different classifier algorithms are tested on 11 differ-
ent feature vectors.
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