Flag Counter
AKILLI SİSTEMLER VE UYGULAMALARI DERGİSİ
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

An Integrated Incubator Module for Pediatric Patient Monitoring Systems

Pediatrik Hasta İzleme Sistemleri için Entegre Kuvöz Modülü

How to cite: Altan U, Gökçen A, Kutlu Y. An integrated incubator module for pediatric patient monitoring systems. Akıllı Sistemler ve Uygulamaları Dergisi (Journal of Intelligent Systems with Applications) 2019; 2(2): 106-110. DOI: 10.54856/jiswa.201912074

Full Text: PDF, in Turkish.

Total number of downloads: 824

Title: An Integrated Incubator Module for Pediatric Patient Monitoring Systems

Abstract: Patient monitoring systems (PMS) is a method used for rating and controlling of the treatments and disorders. While PMS offers as wearable technologies for adults; it is used for adapting to incubator modules to ensure continuous and instant monitoring for newborn babies at the pediatric level. The purpose of this study is to make a pediatric PMS with the ability to be integrated to all type of classical incubators, and monitoring the conditions of the newborn babies with various sensors. It is designed as an Arduino based system that instantly records the variables such as temperature, humidity, air quality to the server using Wi-Fi connection and instantly providing the monitoring ability for clinicians and nurses. Accelerometer is used to control the baby's awake and asleep status, and patientbased safe identification and assessments are made using RFID. As a result, a system has been designed to integrate all the classical incubators and ensure that a large number of incubators can be monitored from a single center.

Keywords: Patient monitoring system; incubator; smart incubator; sensor; Arduino; pediatrics


Başlık: Pediatrik Hasta İzleme Sistemleri için Entegre Kuvöz Modülü

Özet: Hasta takip sistemleri (HTS), bireylerin tedavi ve hastalıklarının değerlendirme süreçlerini kontrol altında tutmak ve hayati fonksiyonlarında meydana gelen süreli ve sürekli değişimler hakkında analiz yapabilmek için kullanılan bir yöntemdir. HTS, yetişkinler için giyilebilir teknolojiler olarak sunulurken; pediatri düzeyinde yeni doğan hastalar için sürekli kontrol imkânı sağlaması için kuvöz modüllerine uyarlanması gerekmektedir. Bu çalışmanın amacı klasik kullanımdaki kuvözlere entegre edilebilme özelliğine sahip, çeşitli sensörlerle yeni doğan bebeğin durumunun kontrolünü ve izlenmesini sağlayan pediatrik hasta izleme sistemi oluşturmaktır. Isı, nem, hava kalitesi gibi değerleri anlık olarak Wi-Fi aracılığıyla sunucuya kaydeden ve doktor, hemşire gibi tıbbi personeller için anlık görüntüleme imkânı sağlayan Arduino tabanlı bir sistem olarak tasarlanmıştır. İvme ölçerler sayesinde bebeğin uyanık ve uykuda olma durumu kontrol edilmekte, RFID ile hasta bazlı güvenli tanımlama ve rahatsızlık kaydı yapılmaktadır. Sonuç olarak tüm kuvözlere entegre edilebilecek ve çok sayıda kuvözün tek bir yerden izlenmesini sağlayacak bir sistem tasarlanmıştır.

Anahtar kelimeler: Hasta takip sistemi; kuvöz; akıllı kuvöz; sensör; Arduino; pediatri


Bibliography:
  • Akbulut FP, Akan A. Smart wearable patient tracking systems. In 2015 Medical Technologies National Conference (TIPTEKNO), October 15-18, 2015, Bodrum, Mugla, Turkey, pp. 1-4.
  • Tanaka H, Kimura R, Ioroi S. Equipment operation by motion recognition with wearable wireless acceleration sensor. In 2009 Third International Conference on Next Generation Mobile Applications, Services and Technologies, September 15-18, 2009, Cardiff, UK, pp. 114-118.
  • Yi WJ, Jia W, Saniie J. Mobile sensor data collector using Android smartphone. In 2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS), August 5-8, 2012, Boise, ID, USA, pp. 956-959.
  • Korhonen I, Parkka J, Van Gils M. Health monitoring in the home of the future. IEEE Engineering in Medicine and Biology Magazine 2003; 22(3): 66-73.
  • Georga EI, Protopappas VC, Bellos CV, Fotiadis DI. Wearable systems and mobile applications for diabetes disease management. Health and Technology 2014; 4(2): 101-112.
  • Dogan RO, Kayikcioglu T. Remote patient monitoring and electronic health record system based on web services. In 2016 24th Signal Processing and Communication Application Conference (SIU), May 16-19, 2016, Zonguldak, Turkey, pp. 1785-1788.
  • Allahverdi N, Altan G. A fuzzy expert system design to monitor patient's condition during heart surgery. In CompSysTech'11: Proceedings of the 12th International Conference on Computer Systems and Technologies, June 2011, pp. 335-340.
  • Isler Y, Selek MH. Design of incubator control system with online video streaming using Raspberry PI. In International Conference of Applied Sciences, Engineering and Mathematics (IBU-ICASEM 2017) Book of Abstracts (ISBN: 978-608-65137-5-7), May 5-7, 2017, Struga, Ohrid, Republic of North Macedonia, p. 89.
  • Tagliaro F, Smyth F, Turrina F, Deyl F, Marigo F. Hospitals report on usage of system for covert video surveillance. Hospital Security and Safety Management 1995; 15(12): 4.
  • Spath P. New infant security system combines technology, training, patient care. Hospital Security and Safety Management 1999; 19(9): 1-3.
  • Gross L. Implementing barcoding technology to promote newborn identification safety. The Pennsylvania Nurse 2009; 64(1): 23,28.
  • Huvane K. Far from child's play. Hospitals are leveraging wireless technologies to ensure that babies and mothers never lose touch. Healthcare Informatics: the Business Magazine for Information and Communication Systems 2008; 25(6): 102-104.
  • Micropik. DHT11 Sensor Datasheet. Retrieved from http://www.micropik.com/PDF/dht11.pdf at June 26, 2017.
  • MQ-135 Sensor Datasheet. Retrieved from http://www.robotshop.com/media/files/pdf/MQ-135-GasSensor-UserManual.pdf at June 26, 2017.
  • ESP8266 Shield Datasheet. Retrieved from http://download.arduino.org/products/UNOWIFI/0AESP8266-Datasheet-EN-v4.3.pdf at June 26, 2017.
  • ADXL345 Sensor Datasheet. Retrieved from https://www.sparkfun.com/datasheets/Sensors/Acceleromet er/ADXL345.pdf at June 26, 2017.
  • OV7670 Sensor Datasheet. Retrieved from https://www.voti.nl/docs/OV7670.pdf at June 26, 2017.
  • MFRC522: Standard performance MIFARE and NTAG frontend. Retrieved from http://www.nxp.com/docs/en/data-sheet/MFRC522.pdf at June 26, 2017.