Flag Counter
AKILLI SİSTEMLER VE UYGULAMALARI DERGİSİ
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

In House Development of Contact Microphone Based Wearable Device for Knee Joint Health Assessment Using Vibroarthrography

Vibroartrografi Kullanılarak Diz Eklemi Sağlığı Değerlendirmesi için Kontak Mikrofon Tabanlı Giyilebilir Cihazın Kurum İçi Geliştirilmesi

How to cite: Verma DK, Hussain M, Kumari P, Kanagaraj S. In house development of contact microphone based wearable device for knee joint health assessment using vibroarthrography. Akıllı Sistemler ve Uygulamaları Dergisi (Journal of Intelligent Systems with Applications) 2022; 5(1): 59-65. DOI: 10.54856/jiswa.202205209

Full Text: PDF, in English.

Total number of downloads: 67

Title: In House Development of Contact Microphone Based Wearable Device for Knee Joint Health Assessment Using Vibroarthrography

Abstract: Nowadays, bone joint disorders are very common in humans. The knee joint abnormality often comes with the increasing age of people. Cartilage degradation and rubbing action of the femoral condyle to the tibial condyle generates the knee joint sounds and this stage turns into osteoarthritis. There are pre-existing diagnosis methods available like X-ray, MRI, etc. but they have their limitations. Some treatment methods are invasive and some are semi-invasive. Early diagnosis of osteoarthritis is possible using vibroarthrography which is a purely non-invasive method and sensor signal output can be featured as an informative tool for next-level treatment. In this study, a contact microphone-based wearable device has been fabricated for knee joint health monitoring and joint angle-based sensor voltage output is characterized. The result of fast Fourier transformation from healthy subjects is observed to be from 0 Hz-100 Hz and short-term Fourier transformation is performed for the obtained decibel value from 40-45 dB. The result of a pathological knee is studied in spectral density analysis and observed a continuous emission of joint sound and signal power distribution is observed over the frequency range of 0 Hz - 500 Hz.

Keywords: Knee joint anatomy; Contact microphone; Osteoarthritis; Vibroarthrography


Başlık: Vibroartrografi Kullanılarak Diz Eklemi Sağlığı Değerlendirmesi için Kontak Mikrofon Tabanlı Giyilebilir Cihazın Kurum İçi Geliştirilmesi

Özet: Günümüzde kemik eklem rahatsızlıkları insanlarda çok yaygındır. Diz eklemi anormalliği genellikle artan yaşla birlikte gelir. Kıkırdak degradasyonu ve femoral kondilin tibial kondile sürtünme hareketi diz eklemi seslerini oluşturur ve bu evre osteoartrite dönüşür. Röntgen, MRI vb. gibi önceden var olan tanı yöntemleri mevcuttur ancak bunların sınırlamaları vardır. Bazı tedavi yöntemleri invaziv, bazıları ise yarı invazivdir. Osteoartritin erken teşhisi, tamamen non-invaziv bir yöntem olan vibroartrografi kullanılarak mümkündür ve sensör sinyal çıkışı, bir sonraki seviye tedavi için bilgilendirici bir araç olarak öne çıkarılabilir. Bu çalışmada, diz eklemi sağlığının izlenmesi için kontak mikrofon tabanlı giyilebilir bir cihaz üretilmiş ve eklem açısına dayalı sensör voltaj çıkışı karakterize edilmiştir. Sağlıklı deneklerden hızlı Fourier dönüşümünün sonucunun 0 Hz-100 Hz arasında olduğu gözlenir ve 40-45 dB arasında elde edilen desibel değeri için kısa süreli Fourier dönüşümü yapılır. Patolojik bir diz sonucu, spektral yoğunluk analizinde incelenir ve 0 Hz- 500 Hz frekans aralığında sürekli bir eklem sesi emisyonu ve sinyal güç dağılımı gözlemlenir.

Anahtar kelimeler: Diz eklemi anatomisi; İletişim mikrofonu; Kireçlenme; Vibroartrografi


Bibliography:
  • Bull AMJ, Amis AA. Knee joint motion: Description and measurement. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 1998; 212(5): 357-372.
  • Yanagawa T, Shelburne K, Serpas F, Pandy M. Effect of hamstrings muscle action on stability of the ACL-deficient knee in isokinetic extension exercise. Clinical Biomechanics 2002; 17(9-10): 705-712.
  • Conigliaro P, Triggianese P, De Martino E, Fonti GL, Chimenti MS, Sunzini F, Viola A, Canofari C, Perricone R. Challenges in the treatment of rheumatoid arthritis. Autoimmunity Reviews 2019; 18(7): 706-713.
  • Ahn JH, Kang DM, Choi KJ. Risk factors for radiographic progression of osteoarthritis after partial meniscectomy of discoid lateral meniscus tear. Orthopaedics & Traumatology: Surgery & Research 2017; 103(8): 1183-1188.
  • Jones MH, Spindler KP. Risk factors for radiographic joint space narrowing and patient reported outcomes of post-traumatic osteoarthritis after ACL reconstruction: data from the MOON cohort. Journal of Orthopaedic Research 2017; 35(7): 1366-1374.
  • Cibere J, Sayre EC, Guermazi A, Nicolaou S, Kopec JA, Esdaile JM, Thorne A, Singer J, Wong H. Natural history of cartilage damage and osteoarthritis progression on magnetic resonance imaging in a population-based cohort with knee pain. Osteoarthritis and Cartilage 2011; 19(6): 683-688.
  • Nagaosa Y, Lanyon P, Doherty M. Characterisation of size and direction of osteophyte in knee osteoarthritis: A radiographic study. Annals of the Rheumatic Diseases 2002; 61(4): 319-324.
  • Doria AS. State-of-the-art imaging techniques for the evaluation of haemophilic arthropathy: Present and future. Haemophilia 2010; 16(s5): 107-114.
  • Ostergaard M, Court-Payen M, Gideon P, Wieslander S, Cortsen M, Lorenzen I, Henriksen O. Ultrasonography in arthritis of the knee: A comparison with MR imaging. Acta Radiologica 1995; 36(1): 19-26.
  • Ibne Mokbul M. Optical coherence tomography: Basic concepts and applications in neuroscience research. Journal of Medical Engineering 2017; 2017: 3409327.
  • Krakowski P, Nogalski A, Jurkiewicz A, Karpiński R, Maciejewski R, Jonak J. Comparison of diagnostic accuracy of physical examination and MRI in the most common knee injuries. Applied Sciences 2019; 9(19): 4102.
  • Ciklacandir S, Isler Y. A cost-effective solution for real-time measurement of human joint angles. Karaelmas Science and Engineering Journal, ACCEPTED, 2021.
  • Wu Y, Krishnan S, Rangayyan RM. Computer-aided diagnosis of knee-joint disorders via vibroarthrographic signal analysis: A review. Critical Reviews in Biomedical Engineering 2010; 38(2): 201-224.
  • Wu Y, Cai S, Yang S, Zheng F, Xiang N. Classification of knee joint vibration signals using bivariate feature distribution estimation and maximal posterior probability decision criterion. Entropy 2013; 15(4): 1375–1387.
  • Falkowski K, Skiba G, Czerner M, Szmajda M and Bączkowicz D. Effects of viscosupplementation on knee joint arthrokinematics - Pilot study. Ortop Traumatol Rehabil 2018; 20(5): 409–419.
  • van den Borne MPJ, Raijmakers NJH, Vanlauwe J, Victor J, de Jong SN, Bellemans J, Saris DBF. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis and Cartilage 2007; 15: 1397–1402.
  • Karpiński R, Machrowska A, Maciejewski M. Application of acoustic signal processing methods in detecting differences between open and closed kinematic chain movement for the knee joint. Applied Computer Science 2019; 15: 36–48.
  • Reddy NP, Rothschild BM, Mandal M, Gupta V, Suryanarayanan S. Noninvasive acceleration measurements to characterize knee arthritis and chondromalacia. Annals of Biomedical Engineering 1995; 23(1): 78-84.
  • Shen Y, Rangayyan RM, Bell GD, Frank CB, Zhang YT, Ladly KO. Localization of knee joint cartilage pathology by multichannel vibroarthrography. Medical Engineering & Physics 1995; 17(8): 583-594.
  • Maussavi ZM, Rangayyan RM, Bell GD, Frank CB, Ladly KO. Screening of vibroarthrographic signals via adaptive segmentation and linear prediction modeling. IEEE Transactions on Biomedical Engineering 1996; 43(1): 15.
  • Rangayyan RM, Krishnan S, Bell GD, Frank CB, Ladly KO. Parametric representation and screening of knee joint vibroarthrographic signals. IEEE Transactions on Biomedical Engineering 1997; 44(11): 1068-1074.
  • Tanaka N, Hoshiyama M. Vibroarthrography in patients with knee arthropathy. Journal of Back and Musculoskeletal Rehabilitation 2012; 25(2): 117-122.
  • Agus K. Arduino Nano A Hands-on Guide for Beginner. PE Press, 2019.
  • Song CG, Kim KS, Seo JH. Non-invasive monitoring of knee pathology based on automatic knee sound classification. In Proceedings of the World Congress on Engineering and Computer Science, October 20-22, 2009, San Francisco, USA.
  • Befrui N, Elsner J, Flesser A, Huvanandana J, Jarrousse O, Le T N, Müller M, Schulze W H, Taing S, Weidert S. Vibroarthrography for early detection of knee osteoarthritis using normalized frequency features. Medical & Biological Engineering & Computing 2018; 56(8): 1499-1514.
  • Ye Y, Wan Z, Liu B, Xu H, Wang Q, Ding T. Monitoring deterioration of knee osteoarthritis using vibration arthrography in daily activities. Computer Methods and Programs in Biomedicine 2022; 213: 106519.