Flag Counter
AKILLI SÄ°STEMLER VE UYGULAMALARI DERGÄ°SÄ°
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Investigation of Mechanical Properties of Silicate Doped Synthetic Flexible Biomaterial

Silikat Katkılı Sentetik Fleksible Biyomalzemenin Mekanik Özelliklerinin İncelenmesi

How to cite: CoÅŸkun Ä, Karaman O. Investigation of mechanical properties of silicate doped synthetic flexible biomaterial. Akıllı Sistemler ve Uygulamaları Dergisi (Journal of Intelligent Systems with Applications) 2022; 5(2): 79-81.

Full Text: PDF, in English.

Total number of downloads: 491

Title: Investigation of Mechanical Properties of Silicate Doped Synthetic Flexible Biomaterial

Abstract: Biomaterials play an active role in tissue regeneration and are widely used in the treatment of tissue transplantation applications for the repair of damaged hard tissue, bone cancer, bone loss due to skeletal trauma and infection, bone fractures and congenital deformities of the facial and skull bones. Since autografts and allografts have many disadvantages, there is a need for synthetic bone grafts and biomaterials. Many bioceramic materials such as beta-tricalcium phosphate (beta-TCP) and calcium sulfate are widely used in bone formation. Since beta-TCP-based bone grafts are used in the form of granules, silicate reinforced flexible strips are used in orthopedic surgery, oral and maxillofacial surgery. The aim of this study is to examine the mechanical properties of silicate-doped flexible biomaterials, taking into account their biocompatibility and their positive effects on tissue regeneration. In order to achieve the stated purpose, the methods planned to be followed, tensile tests will be applied for the mechanical properties of the scanning electron microscope (SEM) image for its morphology. In this study, it was found that silicate-doped flexible biomaterials have a homogeneous and porous structure. In addition, the obtained mechanical test results and the functionality of the silicate-doped flexible biomaterial during bone regeneration according to the ISO (International Organization for Standardization) 5833 and ASTM (American Society for Testing and Materials) D638 standard have been demonstrated.

Keywords: Biomaterial; Beta-TCP; Osteoconductive; Tensile test; Silica


Başlık: Silikat Katkılı Sentetik Fleksible Biyomalzemenin Mekanik Özelliklerinin İncelenmesi

Özet: Biyomalzemeler doku rejenerasyonunu sağlamada aktif rol almaktadır ve hasarlı sert dokunun onarımına yönelik doku nakli uygulamaları, kemik kanseri, iskelet travması ve enfeksiyonuna bağlı kemik kayıpları, kemik kırıkları ve yüz ve kafatası kemiklerinin doğuştan gelen deformitelerinin tedavisinde yaygın olarak kullanılmaktadır. Otogreft ve allogreftlerin birçok dezavantaja sahip olması sebebiyle sentetik kemik greft ve biyomalzemelere ihtiyaç doğmuştur. beta-trikalsiyum fosfat (beta-TCP) ve kalsiyum sülfat gibi birçok biyoseramik materyal kemik oluşumunda yaygın olarak kullanılmaktadır. beta-TCP bazlı kemik greftlerinin granül formunda kullanılması sebebiyle ortopedik cerrahi, oral ve maksillofasiyal cerrahide silikat katkılı esnek şeritler kullanılmaktadır. Bu çalışmanın amacı, silikat katkılı fleksible biyomalzemelerin biyouyumluluğunu ve doku rejenerasyonu üzerindeki olumlu etkilerini dikkate alarak, mekanik özelliklerinin incelenmesi amaçlanmaktadır. Belirtilen amacı gerçekleştirmek için izlenmesi planlanan yöntemler, morfolojisi için taramalı elektron mikroskop (SEM) görüntüsü mekanik özellikleri için çekme testleri uygulanacaktır. Bu çalışmada silikat katkılı esnek biyomalzemelerin homojen ve porlu yapıya sahip olduğu bulunmuştur. Ayrıca elde edilen mekanik test sonuçları ve ISO (Uluslararası Standartlar Organizasyonu) 5833 ve ASTM (Uluslararası Amerikan Test ve Materyalleri Topluluğu) D638 standartına göre silikat katkılı fleksible biyomalzemenin kemik rejenerasyonu boyunca işlevselliğini ortaya koymuştur.

Anahtar kelimeler: Biyomalzeme; Beta-TCP; Osteokondüktif; Çekme testi; Silika


Bibliography:
  • Laurencin CT, Attawia M, Borden MD. Advancements in tissue engineered bone substitutes. Current Opinion in Orthopaedics 1999; 10(6): 445-451.
  • Zhang X. Preparation and characterization of calcium phosphate ceramics and composites as bone substitutes. UC San Diego. ProQuest ID: umi-ucsd-1860, University of California, San Diego, 2007.
  • Zhang X, Xu M, Liu X, Xhang F, Wei Y, Yueheng S, Dai X, Duan X, Duan A, Deng X. Restoration of critical-sized defects in the rabbit mandible using autologous bone marrow stromal cells hybridized with nano-beta-tricalcium phosphate/collagen scaffolds. Journal of Nanomaterials 2013; 2013: 1-8.
  • Jackson IT, Helden G, Marx R. Skull bone grafts in maxillofacial and craniofacial surgery. Journal of Oral & Maxillofacial Surgery 1986; 44(12): 949-955.
  • Iimori Y, Kameshima Y, Yasumori A, Okada K. Effect of solid/solution ratio on apatite formation from CaSiO3 ceramics in simulated body fluid. Journal of Materials Science: Materials in Medicine 2004; 15: 1247–1253.
  • Xu S, Lin K, Wang Z, Chang J, Wang L, Lu J, Ning C. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials 2008; 29(17): 2588–2596.
  • Nagineni VV, James AR, Alimi M, Hofstetter C, Shin BJ, Njoku I, Tsiouris AJ, Hartl R. Silicate-substituted calcium phosphate ceramic bone graft replacement for spinal fusion procedures. Spine 2012; 37(20): E1264-E1272.
  • Dogdu B, Ertugrul O. Statistical relationship between strontium content and cooling rate on A356 alloy by using regression analysis. Journal of Intelligent Systems with Applications 2021; 4(1): 31-37.
  • Gerjon H, Arts JJC. "Bioresorbability, porosity and mechanical strength of bone substitutes: What is optimal for bone regeneration? Injury 2011; 42(Suppl. 2): S22-S25.
  • Blokhuis TJ, Arts JJC. Bioactive and osteoinductive bone graft substitutes: Definitions, facts and myths. Injury 2011; 42(Suppl. 2): S26-S29.