Flag Counter
AKILLI SİSTEMLER VE UYGULAMALARI DERGİSİ
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

EEG based Spatial Attention Shifts Detection using Time-Frequency features on Empirical Wavelet Transform

Ampirik Dalgacık Dönüşümünde Zaman-Frekans Özniteliklerini Kullanarak EEG tabanlı Uzamsal Dikkat Kayması Tespiti

How to cite: Altan G, İnat G. Eeg based spatial attention shifts detection using time-frequency features on empirical wavelet transform. Akıllı Sistemler ve Uygulamaları Dergisi (Journal of Intelligent Systems with Applications) 2021; 4(2): 144-149.

Full Text: PDF, in English.

Total number of downloads: 699

Title: EEG based Spatial Attention Shifts Detection using Time-Frequency features on Empirical Wavelet Transform

Abstract: The human nervous system has over 100b nerve cells, of which the majority are located in the brain. Electrical alterations, Electroencephalogram (EEG), occur through the interaction of the nerves. EEG is utilized to evaluate event-related potentials, imaginary motor tasks, neurological disorders, spatial attention shifts, and more. In this study, We experimented with 29-channel EEG recordings from 18 healthy individuals. Each recording was decomposed using Empirical Wavelet Transform, a time-frequency domain analysis technique at the feature extraction stage. The statistical features of the modulations were calculated to feed the conventional machine learning algorithms. The proposal model achieved the best spatial attention shifts detection accuracy using the Decision Tree algorithm with a rate of 89.24%.

Keywords: electroencephalogram (EEG); empirical wavelet transform; EWT; k-NN; SVM; MLP; decision tree


Başlık: Ampirik Dalgacık Dönüşümünde Zaman-Frekans Özniteliklerini Kullanarak EEG tabanlı Uzamsal Dikkat Kayması Tespiti

Özet: İnsan sinir sistemi, çoğunluğu beyinde bulunan 100 milyardan fazla sinir hücresine sahiptir. Elektriksel değişiklikler, Elektroensefalogram (EEG), bu sinirlerin etkileşimi yoluyla meydana gelir. EEG, olaylarla ilgili potansiyelleri, düşünsel motor görevleri, nörolojik rahatsızlıkları, mekansal dikkat kaymalarını ve daha birçok durumu değerlendirmek için kullanılır. Bu çalışmada, 18 sağlıklı bireyden alınan 29-kanallı EEG kayıtları ile analizler gerçekleştirilmiştir. Her kayıt, öznitelik çıkarma aşamasında bir zaman-frekans alanı analiz tekniği olan Ampirik Dalgacık Dönüşümü kullanılarak ayrıştırılmıştır. Sonrasında, ayrıştırılan her modülasyondan hesaplanan istatistiksel öznitelikler, geleneksel makine öğrenme algoritmalarının beslenmesinde kullanılmıştır. Önerilen model, Karar Ağacı algoritmasını kullanarak %89.24 oranıyla en iyi uzamsal dikkat kayması algılama başarısını elde etmiştir.

Anahtar kelimeler: Elektroensefalografi (EEG); ampirik dalgacık dönüşümü; ADA; k-NN; DVM; MLP; karar ağacı


Bibliography:
  • Sayilgan E, Yuce YK, Isler Y. Determining gaze information from steady-state visually-evoked potentials. Karaelmas Science and Engineering Journal 2020; 10(2): 151-157.
  • Altan G, Yayik A, Kutlu Y. Deep learning with ConvNet predicts imagery tasks through EEG. Neural Processing Letters 2021; 1-16.
  • Sayilgan E, Yuce YK, Isler Y. Frequency recognition from temporal and frequency depth of the brain-computer interface based on steady-state visual evoked potentials. Journal of Intelligent Systems with Applications 2021; 4(1): 68-73.
  • Sayilgan E, Yuce YK, Isler Y. Evaluation of mother wavelets on steady-state visually-evoked potentials for triple-command brain-computer interfaces. Turkish Journal of Electrical Engineering & Computer Sciences 2021; 29(5): 2263-2279.
  • Sayilgan E, Yuce YK, Isler Y. Evaluating steady-state visually evoked potentials-based brain-computer interface system using wavelet features and various machine learning methods. Book chapter in Brain-Computer Interface, IntechOpen, 2021.
  • Sayilgan E, Yuce YK, Isler Y. Evaluation of wavelet features selected via statistical evidence from steady-state visually-evoked potentials to predict the stimulating frequency. Journal of the Faculty of Engineering and Architecture of Gazi University 2021; 36(2): 593-605.
  • Koklu M, Sabanci K. Estimation of credit card customers payment status by using KNN and MLP. International Journal of Intelligent Systems and Applications in Engineering 2016; SI: 249-251.
  • Altan G, Kutlu Y, Allahverdi N. Deep belief networks based brain activity classification using EEG from slow cortical potentials in stroke. International Journal of Applied Mathematics Electronics and Computers 2016; SI-1: 205-210.
  • Kantar T, Erdamar A. Detection of K-complexes in sleep EEG with support vector machines. In 25th Signal Processing and Communications Applications Conference (SIU), May 15-18, 2017, Antalya, Turkey, pp. 1-4.
  • Tang BB, Wei X, Guo G, Yu F, Ji M, Lang H, Liu J. The effect of odor exposure time on olfactory cognitive processing: An ERP study. Journal of Integrative Neuroscience 2019; 18(1): 87-93.
  • Reichert C, Tellez Ceja IF, Sweeney-Reed CM, Heinze HJ, Hinrichs H, Durschmid S. Impact of stimulus features on the performance of a gaze-independent brain-computer interface based on covert spatial attention shifts. Frontiers in Neuroscience 2020; 14:1250.
  • Pavel S. Use of spiking neural networks. BSc Thesis, University of West Bohemia, Czech Republic, 2021. Retrieved from https://dspace5.zcu.cz/handle/11025/44220
  • Gilles J. Empirical wavelet transform. IEEE Transactions on Signal Processing 2013; 61(16): 3999-4010.
  • Anuragi A, Sisodia DS. Empirical wavelet transform based automated alcoholism detecting using EEG signal features. Biomedical Signal Processing and Control 2020; 57: 101777.
  • Bhattacharyya A, Sharma M, Pachori RB, Sircar P, Acharya UR. A novel approach for automated detection of focal EEG signals using empirical wavelet transform. Neural Computing and Applications 2018; 29: 47–57.
  • Demir E. Diagnosis of chronic obstructive pulmonary disease using empirical wavelet transform analysis from auscultation sounds. MSc Thesis, Iskenderun Technical University, Hatay, Turkey, 2020.
  • Sadiq MT, Yu X, Yuan Z, Fan Z, Rehman AU, Li G, Xiao G. Motor imagery EEG signals classification based on mode amplitude and frequency components using empirical wavelet transform. IEEE Access 2019; 7: 127678-127692.
  • Akbari H, Ghofrani S. Fast and accurate classification F and NF EEG by using SODP and EWT. International Journal of Image, Graphics and Signal Processing (IJIGSP) 2019; 11(1): 29-35.
  • Reichert R, Tellez Ceja IF, Durschmid S. Spatial attention shifts to colored items-An EEG-based brain-computer interface. Repository for Research Data and Publications of OVGU, 2020. Retrived from doi: 10.24352/UB.OVGU-2020-155
  • Gursoy MI, Ustun SV, Yilmaz AS. An efficient DWT and EWT feature extraction methods for classification of real data PQ disturbances. International Journal of Engineering Research and Development 2018; 10(1): 158-171.
  • Hu Y, Li F, Li H, Liu C. An enhanced empirical wavelet transform for noisy and non-stationary signal processing. Digital Signal Processing 2017; 60: 220-229.
  • Mitchell TM. Does machine learning really work? AI Magazine 1997; 18(3): 11-20.
  • Ozekes S. A Data mining application. PhD Thesis, Marmara University, Istanbul, Turkey, 2002.