Flag Counter
AKILLI SİSTEMLER VE UYGULAMALARI DERGİSİ
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Design of Portable Multicolor LED-Based Optical System for the Photobiomodulation Therapy on Wound Healing Process

Yara İyileştirme Sürecinde Fotobiyomodülasyon Terapisi için Çok Renkli LED Tabanlı Optik Sistem Tasarımı

How to cite: Topaloğlu Avşar N, Balkaya U, Yaralı Çevik ZB. Design of portable multicolor led-based optical system for the photobiomodulation therapy on wound healing process. Akıllı Sistemler ve Uygulamaları Dergisi (Journal of Intelligent Systems with Applications) 2021; 4(1): 61-67. DOI: 10.54856/jiswa.202105159

Full Text: PDF, in English.

Total number of downloads: 514

Title: Design of Portable Multicolor LED-Based Optical System for the Photobiomodulation Therapy on Wound Healing Process

Abstract: Photobiomodulation is a practical and noninvasive treatment that triggers cell proliferation, cell differentiation, wound healing, new tissue formation, inflammation and pain reduction with low-level light therapy. Light-emitting diodes (LEDs) are energy-saving, affordable and safe alternatives to laser devices which are recently preferred in photobiomodulation. Although the wavelengths between 600-700 nm are most preferred ones, there is a lack of practical optical systems which study this mechanism in vitro with different wavelengths simultaneously. In this study, a portable and remotely controlled multicolor LED-based system was designed and tested on the wound healing process of human keratinocytes by irradiating the cells homogenously with 3 different wavelengths (460-475 nm as blue, 515-535 nm as green, and 585-595 nm as orange) on different experimental groups at the same time. Its proliferative and wound healing effect was evaluated with cell viability (MTT) analysis and cell migration (scratch) assay, respectively. It was observed that orange-LEDs were designated as the most triggering wavelength in terms of cell proliferation. Also, it was revealed with this device that different wavelengths can reach the intended accelerated wound healing process, so this optical system will be an advantageous design for future practical photobiomodulation studies in vitro.

Keywords: photobiomodulation; blue LED; green LED; orange LED; wound healing


Başlık: Yara İyileştirme Sürecinde Fotobiyomodülasyon Terapisi için Çok Renkli LED Tabanlı Optik Sistem Tasarımı

Özet: Fotobiyomodülasyon, düşük seviyeli ışık tedavisi ile hücre çoğalmasını, hücre farklılaşmasını, yara iyileşmesini, yeni doku oluşumunu, iltihaplanmayı ve ağrı azalmasını sağlayan pratik ve girişimsel olmayan bir tedavidir. Işık yayan diyotlar (LED'ler), son zamanlarda fotobiyomodülasyonda sıklıkla tercih edilen lazer cihazlarına kıyasla enerji tasarrufu sağlayan, ekonomik ve güvenli alternatiflerdir. 600-700 nm arasındaki dalga boyları en çok tercih edilen dalga boyları olsa da, aynı anda farklı dalga boylarında bu mekanizmayı in vitro olarak inceleyen pratik optik sistem eksikliği söz konusudur. Bu çalışmada, taşınabilir ve uzaktan kontrollü çok renkli LED tabanlı bir optik sistem tasarlanmış ve bu sistem ile 3 farklı dalga boyunun (460-475 nm mavi, 515-535 nm yeşil, ve turuncu 585-595 nm) aynı anda hücreler üzerindeki proliferatif ve yara iyileştirici etkisi, sırasıyla hücre canlılığı (MTT) analizi ve hücre göçü (scratch) analizi ile değerlendirilmiştir. Turuncu-LED'lerin hücre proliferasyonu açısından en tetikleyici dalga boyu olduğu görülmüştür. Ayrıca bu cihazla, farklı dalga boylarının amaçlanan hızlandırılmış yara iyileşme sürecini tetikleyebileceği ortaya konulmuştur. Bu nedenle bu optik sistem, in vitro olarak gelecekteki pratik fotobiyomodülasyon çalışmaları için avantajlı bir prototip tasarımı olmuştur.

Anahtar kelimeler: fotobiyomodülasyon; mavi LED; yeşil LED; turuncu LED; yara iyileşmesi


Bibliography:
  • Zaret MM, Breinin GM, Schmidt H, Ripps H, Siegel IM, Solon LR. Ocular lesions produced by an optical maser (laser). Science 1961; 134(3489): 1525-1526.
  • Kononova MM. Soil Organic Matter, Pergamon publsihing, 1966.
  • Yun SH, Kwok SJJ. Light in diagnosis, therapy and surgery. Nature Biomedical Engineering 2017; 1(1): 0008.
  • Topaloglu N, Kadikoylu G, Onak G, Karaman O. The effect of indocyanine green-based photodynamic therapy on healthy fibroblast and keratinocyte cells. Photodiagnosis and Photodynamic Therapy 2020; 31: 101891.
  • Topaloglu N, Guney M, Yuksel S, Gulsoy M. Antibacterial photodynamic therapy with 808-nm laser and indocyanine green on abrasion wound models. Journal of Biomedical Optics 2015; 20(2): 028003.
  • Topaloglu N, Gulsoy M, Yuksel S. Antimicrobial photodynamic therapy of resistant bacterial strains by indocyanine green and 809-nm diode laser. Photomedicine and Laser Surgery 2013; 31(4): 155-162.
  • Bolukbasi Ates G, Ak A, Garipcan B, Gulsoy M. Photobiomodulation effects on osteogenic differentiation of adipose-derived stem cells. Cytotechnology 2020; 72(2): 247-258.
  • Bolukbasi Ates G, Ak A, Gulsoy M. Investigation of photobiomodulation potentiality by 635 and 809 nm lasers on human osteoblasts. Lasers in Medical Science 2017; 32(3): 591-599.
  • Heiskanen V, Hamblin MR. Photobiomodulation: Lasers vs. light emitting diodes? Photochemical and Photobiological Sciences 2018; 17(8):1003-1017.
  • Niemz M. Laser-Tissue Interactions: Fundamentals and Applications, Springer, 2019.
  • Doeuk C. Current indications for low level laser treatment in maxillofacial surgery: A review. British Journal of Oral and Maxillofacial Surgery 2015; 53(4): 309-315.
  • Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Annals Biomedical Engineering 2012; 40(2): 516-533.
  • Gupta A, Avci P, Sadasivam M, Chandran R, Parizotto N, Vecchio D, Antunes-Melo WC, Dai T, Chiang LY, Hamblin MR. Shining light on nanotechnology to help repair and regeneration. Biotechnology Advances 2013; 31(5): 607-631.
  • Huang YY, Chen ACH, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose-Response 2009; 7(4): 358-383.
  • Barolet D. Light-emitting diodes (LEDs) in dermatology. Seminars in Cutaneous Medicine and Surgery 2008; 27(4): 227-238.
  • Wang Y, Huang YY, Wang Y, Lyu P, Hamblin MR. Photobiomodulation (blue and green light) encourages osteoblasticdifferentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels. Scientific Reports 2016; 6(1): 33719.
  • Chabert R, Fouque L, Pinacolo S, Garcia-Gimenez N, Bonnans M, Cucumel K, Domloge N. Evaluation of light-emitting diodes (LED) effect on skin biology (in vitro study). Skin Research and Technology 2015; 21(4): 426-436.
  • Petrishchev NN, Papayan GV, Chistyakova LV, Struy AV, Faizullina DR. Effect of Photobiomodulation by Red and Infrared Laser Radiation on Motility of Paramecium caudatum. Journal of Evolutionary Biochemistry and Physiology 2018; 54(6): 457-464.
  • Avci P, Gupta GK, Clark J, Wikonkal N, Hamblin MR. Low-level laser (light) therapy (LLLT) for treatment of hair loss. Lasers in Surgery and Medicine 2014; 46(2): 144-151.
  • Metin R, Tatli U, Evlice B. Effects of low-level laser therapy on soft and hard tissue healing after endodontic surgery. Lasers in Medical Science 2018; 3(8): 1699-1706.
  • Bolukbasi Ates G, Ak A, Garipcan B, Gulsoy M. Methylene blue mediated photobiomodulation on human osteoblast cells. Lasers in Medical Science 2017; 32(8): 1847-1855.
  • Zhu T, Wu Y, Zhou X, Yang Y, Wang Y. Irradiation by blue light-emitting diode enhances osteogenic differentiation in gingival mesenchymal stem cells in vitro. Lasers in Medical Science 2019; 34(7): 1473-1481.
  • Hwang MH, Kim KS, Yoo CM, Shin JH, Nam HG, Jeong JS, Kim JH, Lee KH, Choi H. Photobiomodulation on human annulus fibrosus cells during the intervertebral disk degeneration: extracellular matrix-modifying enzymes. Lasers in Medical Science 2016; 31(4): 767-777.