Flag Counter
AKILLI SİSTEMLER VE UYGULAMALARI DERGİSİ
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Modulation Classification of MFSK Modulated Signals Using Wavelet Decomposition

MFSK Kiplenimli İşaretlerde Dalgacık Ayrıştırması Kullanarak Kiplenim Sınıflandırılması

How to cite: Barış B, Kuntalp D, Çek ME. Modulation classification of mfsk modulated signals using wavelet decomposition. Akıllı Sistemler ve Uygulamaları Dergisi (Journal of Intelligent Systems with Applications) 2018; 1(1): 36-40.

Full Text: PDF, in Turkish.

Total number of downloads: 866

Title: Modulation Classification of MFSK Modulated Signals Using Wavelet Decomposition

Abstract: In this study,a wavelet decomposition based method is proposed for determining the modulation type of the incoming signal to the receiver which is one of the important problems in intelligent communication systems. In this method, it is aimed to design the transmitted signal for determining the type of Mary FSK modulated signal and to detect the energy in each frequency band by using Discrete Wavelet Transform (DWT). For this, standard deviations in the lower bands are as features. In order to evaluate the performance of the classifier, simulation studies have been performed at different signal-to-noise ratio (SNR) levels. When the results for different frequency settings, i.e. carrier frequency and frequency range, it is seen that the classifier using the K-means clustering algorithm has a higher correct classification performance than the results reported in the literature when the suitable carrier frequency and frequency range are selected.

Keywords: M-ary frequency shift keying (MFSK); discrete wavelet transform; wavelet decomposition; k-means clustering algorithm


Başlık: MFSK Kiplenimli İşaretlerde Dalgacık Ayrıştırması Kullanarak Kiplenim Sınıflandırılması

Özet: Bu çalışmada, akıllı haberleşme sistemlerindeki önemli problemlerden birisi olan alıcıya gelen işarete ait kiplenim türünün belirlenmesi için dalgacık ayrıştırması tabanlı bir yöntem önerilmiştir. Bu yöntemde amaç, M-seviyeli frekans kaydırmalı anahtarlamaya sahip (M-ary FSK) işaretlerde kiplenim türünün tespit edilmesi için gönderici işaretin tasarlanması ve Ayrık Dalgacık Dönüşümü (ADD) ile her bir frekans bandına düşen enerjilerin tespit edilmesidir. Bunun için alt bandlardaki işaretlerin standart sapmaları öznitelik olarak kullanılmıştır. Sınıflandırıcının performansını değerlendirmek için farklı işaret gürültü oranı (SNR) seviyelerinde benzetim çalışmaları yapılmıştır. Frekans aralığı değiştirilerek elde edilen sonuçlar karşılaştırıldığında, uygun taşıyıcı frekansı ve frekans aralığı seçildiğinde K-ortalama kümeleme algoritması kullanan sınıflandırıcının literatürde raporlanan sonuçlara göre daha yüksek doğru sınıflandırma başarımına sahip olduğu görülmektedir.

Anahtar kelimeler: M-seviyeli frekans kaydırmalı anahtarlama (MFSK); ayrık dalgacık dönüşümü; dalgacık ayrıştırması; k-ortalama kümeleme algoritması


Bibliography:
  • Ghanekar P, Borde SD. Automatic modulation classification for cognitive radio. International Journal of Innovative Research in Computer Communication Engineering 2015; 3(11): 10556-10561.
  • Wong MLD, Nandi AK. Automatic digital modulation recognition using artificial neural network and genetic algorithm. Signal Processing 2004; 84: 351-365.
  • Adjemov SS, Klenov NV, Tereshonok MV, Chirov DS. Methods for the automatic recognition of digital modulation of signals in cognitive radio systems. International Journal of Innovative Research in Computer Communication Engineering 2015; 70(6): 448-456.
  • Popoola JJ, Olst RV. Development and comparative study of effects of training algorithms on performance of artificial neural network based analog and digital automatic modulation recognition. International Journal of Engineering Science and Technology Review 2015; 8(4): 135-144.
  • Maliatsos K, Vassaki S, Constantinou P. Interclass and intraclass modulation recognition using the wavelet transform. In The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2007.
  • Prakasam P, Madheswaran M. Digital modulation identification model using wavelet transform and statistical parameters. Journal of Computer Systems, Networks, and Communications 2008; 2008: 175236.
  • Hassan K, Dayoub I, Hamouda W, Berbineau M. Automatic modulation recognition using wavelet transform and neural networks in wireless systems. EURASIP Journal on Advances in Signal Processing 2010; 2010: 532898.
  • Ho K, Vaz C, Daut DG. Automatic classification of amplitude, frequency, and phase shift keyed signals in the wavelet domain. In IEEE Sarnoff Symposium, 2010, pp. 1-6.
  • Valipour MH, Homayounpour MM, Mehralian MA. Automatic digital modulation recognition in presence of noise using SVM and PSO. In IEEE 6th International Symposium on Telecommunications, 2012, pp. 378-382.
  • Chen J, Kuo Y, Li J, Fu F, Ma Y. Digital modulation identification by wavelet analysis. In IEEE 6th International Conference on Computational Intelligence and Multimedia Applications, 2005, pp. 1-6.
  • Avci E, Avci D. The performance comparison of discrete wavelet neural network and discrete wavelet adaptive network based fuzzy inference system for digital modulation recognition. Expert Systems with Applications 2008; 35(1-2): 90-101.
  • Park CS, Choi JH, Nah SP, Jang W. Automatic modulation recognition of digital signals using wavelet features and SVM. In IEEE 10th International Conference on Advanced Communication Technology, 2008, pp. 387-390.
  • Yaqin Z, Guanghui R, Xuexia W, Zhilu W, Xuemai G. Automatic digital modulation recognition using artificial neural networks. In IEEE International Conference on Neural Networks & Signal Processing, 2003, pp. 257-260.
  • Hussain SS, Zabit U, Bernal OD. Real time discrete wavelet transform architecture for self mixing interferometry signal processing. In 14th International Bhurban Conference on Applied Sciences and Technology, 2017, pp. 323-327.
  • Mallat S. A Wavelet Tour of Signal Processing: The Sparse Way. Elsevier Academic Press, 2008.
  • Ocak H. Automatic detection of epileptic seizures in eeg using discrete wavelet transform and approximate entropy. Expert Systems with Applications 2009; 36(2): 2027-2036.
  • Misiti M, Misiti Y, Oppenheim G, Poggi JM. Chapter 3: From wavelet bases to the fast algorithm. Book chapter in Wavelets and Their Applications, Wiley-ISTE, 2007.
  • Duda RO, Hart PE, Stork DG. Chapter 10: Unsupervised learning and clustering. Book Chapter in Pattern Classification, Wiley & Sons, 2000.