Flag Counter
AKILLI SÄ°STEMLER VE UYGULAMALARI DERGÄ°SÄ°
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Electrospun Nanofibers on Applications of Nerve Guide Channel

Elektroeğrilmiş Nanoliflerin Sinir Kılavuz Kanalı Uygulamalarında Kullanımı

How to cite: GüneÅŸ C, Avcı A, Öziç MÃ. Electrospun nanofibers on applications of nerve guide channel. Akıllı Sistemler ve Uygulamaları Dergisi (Journal of Intelligent Systems with Applications) 2020; 3(1): 43-47.

Full Text: PDF, in Turkish.

Total number of downloads: 1125

Title: Electrospun Nanofibers on Applications of Nerve Guide Channel

Abstract: Therapeutic methods developed for the repair of damaged nerves often do not provide adequate recovery. Along with the application of tissue engineering principles in the nerve tissue regeneration, many researches have been made and are still in progress to develop an ideal nerve guide channel. Promising studies are ongoing for the use of nano-sized fibrous scaffolds for nerve tissue repair, which can mimic the topography of the natural extracellular matrix. With the electrospinning method, nanofibers can be produced and the nanofiber nerve channels enabling neuron development and regrowth can be placed in the nerve gap that has lost its function. This study summarizes nerve tissue engineering strategies and clinical practices, including biomaterials and tissue scaffold production techniques to produce a structure that allows neurons to adhere, multiply, and eventually form nerves.

Keywords: Electrospinning; nanofibers; nerve guide channel; nerve regeneration; peripheral nervous system


Başlık: Elektroeğrilmiş Nanoliflerin Sinir Kılavuz Kanalı Uygulamalarında Kullanımı

Özet: Hasarlı sinirlerin onarımı için geliştirilen tedavi edici yöntemler çoğu zaman yeterli iyileşme sağlayamamaktadır. Doku mühendisliği iskele geliştirme prensiplerinin sinir doku rejenerasyonunda uygulanması ile birlikte sinir doku hasarlarında kullanılabilecek ideal sinir kılavuz kanalı geliştirilmesi için birçok araştırma yapılmıştır ve yapılmaya devam edilmektedir. Doğal hücre dışı matrisin topografyasını çoğunlukla taklit edebilen nano boyutlu lifli yapı iskelelerinin sinir doku onarımı için kullanımı ile igili umut vaat eden çalışmalar sürdürülmektedir. Elektroeğirme yöntemi ile nano boyutlu çaplara sahip lifler üretilebilir ve nanofiber sinir kanalları, fonksiyonunu kaybetmiş sinir boşluğuna yerleştirilerek nöron gelişimini ve yeniden büyümeyi sağlayabilir. Bu çalışma, nöronların yapışmasına, çoğalmasına ve nihayetinde sinir oluşturmasına izin verecek bir yapının üretilmesi için uygun biyomalzemeler ile doku iskelesi üretim tekniklerini içeren sinir doku mühendisliği stratejilerini ve klinik uygulamalarını özetlemektedir.

Anahtar kelimeler: Elektroeğirme; nanofiberler; periferik sinir sistemi; sinir kılavuz kanalı; sinir rejenerasyonu


Bibliography:
  • Afshari M. Electrospun nanofibers. Woodhead Publishing, 2016.
  • Wang CY, Zhang KH, Fan CY, Mo XM, Ruan HJ, Li FF. Aligned natural–synthetic polyblend nanofibers for peripheral nerve regeneration. Acta Biomateriala 2011; 7(2): pp. 634-643.
  • Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology 2003; 63(15): 2223-2253.
  • Andrady AL. Science and technology of polymer nanofibers. John Wiley & Sons, 2008.
  • Al-Hazeem NZA. Nanofibers and electrospinning method. Book Chapter in Novel Nanomaterials - Synthesis and Applications (editors: Kyzas GZ, Mitropoulos AC), IntechOpen, 2018.
  • Rutledge GC, Fridrikh SV. Formation of fibers by electrospinning. Advanced Drug Delivery Reviews 2007; 59(14): 1384-1391.
  • Gu X, Ding F, Yang Y, Liu J. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Progress in Neurobiology 2011; 93(2): 204-230.
  • Ciardelli G, Chiono V. Materials for peripheral nerve regeneration. Macromolecular Bioscience 2006; 6(1): 13-26.
  • Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomaterialia 2020; 106: 54-69.
  • Rutishauser U. Adhesion molecules of the nervous system. Current Opinion Neurobiology 1993; 3(5): 709-715.
  • Bushnell BD, McWilliams AD, Whitener GB, Messer TM. Early clinical experience with collagen nerve tubes in digital nerve repair. The Journal of Hand Surgery 2008; 33(7): 1081-1087.
  • Yang Y, Gu X, Tan R, Hu W, Wang X, Zhang P, Zhang T. Fabrication and properties of a porous chitin/chitosan conduit for nerve regeneration. Biotechnology Letters 2004; 26(23): 1793-1797.
  • Gamez E, Goto Y, Nagata G, Iwaki T, Sasaki T, Matsuda T. Photofabricated gelatin-based nerve conduits: Nerve tissue regeneration potentials. 13(5): 549-564.
  • Whitworth IH, Brown RA, Dore C, Green CJ, Terenghi G. Orientated mats of fibronectin as a conduit material for use in peripheral nerve repair. The Journal of Hand Surgery: British & European Volume 1995; 20(4): 429-436.
  • Yang Y, Ding F, Wu J, Hu W, Liu W, Liu J, Gu X. Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration. Biomaterials 2007; 28(36): 5526-5535.
  • Apel PJ, Garrett JP, Sierpinski P, Ma J, Atala A, Smith TL, Koman LA, Van Dyke ME. Peripheral nerve regeneration using a keratin-based scaffold: Long-term functional and histological outcomes in a mouse model. The Journal of Hand Surgery 2008; 33(9): 1541-1547.
  • Zhang H, Wei YT, Tsang KS, Sun CR, Li J, Huang H, Cui FZ, An YH. Implantation of neural stem cells embedded in hyaluronic acid and collagen composite conduit promotes regeneration in a rabbit facial nerve injury model. Journal of Translational Medicine 2008; 6(1): 67.
  • Hudson TW, Zawko S, Deister C, Lundy S, Hu CY, Lee K, Schmidt CE. Optimized acellular nerve graft is immunologically tolerated and supports regeneration. Tissue Engineering 2004; 10(11-12): 1641-1651.
  • Wang S, Cai L. Polymers for fabricating nerve conduits. International Journal of Polymer Science 2010; 2010: 138686.
  • Lee JY, Bashur CA, Goldstein AS, Schmidt CE. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 2009; 30(26): 4325-4335.
  • Xu D, Fan L, Gao L, Xiong Y, Wang Y, Ye Q, Yu A, Dai H, Yin Y, Cai J, Zhang L. Micro-nanostructured polyaniline assembled in cellulose matrix via interfacial polymerization for applications in nerve regeneration. ACS Applied Materials & Interfaces 2016; 8(27): 17090-17097.
  • Green RA, Lovell NH, Wallace GG, Poole-Warren LA. Conducting polymers for neural interfaces: Challenges in developing an effective longterm implant. Biomaterials 2008; 29(24-25): 3393-3399.
  • Wang X, Chen L, Ao Q, Sharma A, Sharma HS. Progress in the research and development of nerve conduits. Translational Neuroscience and Clinics 2015; 1(2): 97-101.
  • Dellon AL, Chang BW. An alternative incision for approaching recurrent median nerve compression at the wrist. Plastic and Reconstructive Surgery 1992; 89(3): 576-578.
  • Kehoe S, Zhang XF, Boyd D. FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy. Injury 2012; 43(5): 553-572.
  • Koh HS, Yong T, Chan CK, Ramakrishna S. Enhancement of neurite outgrowth using nanostructured scaffolds coupled with laminin. Biomaterials 2008; 29(26): 3574-3582.
  • Jeffries EM, Wang Y. Biomimetic micropatterned multi-channel nerve guides by templated electrospinning. Biotechnology and Bioengineering 2012; 109(6): 1571-1582.
  • Xie J, MacEwan MR, Schwartz AG, Xia Y. Electrospun nanofibers for neural tissue engineering. Nanoscale 2010; 2(1): 35-44.
  • Wang W, Itoh S, Konno K, Kikkawa T, Ichinose S, Sakai K, Ohkuma T, Watabe K. "Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. Journal of Biomedical Materials Research Part A 2009; 91(4): 994-1005.
  • Xie J, Willerth SM, Li X, Macewan MR, Rader A, Sakiyama-Elbert SE, Xia Y. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 2009; 30(3): 354-362.
  • Prabhakaran MP, Venugopal JR, Ramakrishna S. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials 2009; 3(28): 4996-5003.
  • Patel S, Kurpinski K, Quigley R, Gao H, Hsiao BS, Poo MM, Li S. Bioactive nanofibers: Synergistic effects of nanotopography and chemical signaling on cell guidance. Nano Letters 2007; 7(7): 2122-2128.
  • Chew SY, Wen J, Yim EFK, Leong KW. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 2005; 6(4): 2017-2024.
  • Shin RH, Friedrich PF, Crum BA, Bishop AT, Shin AY. Treatment of a segmental nerve defect in the rat with use of bioabsorbable synthetic nerve conduits: A comparison of commercially available conduits. Journal of Bone and Joint Surgery 2009; 91(9): 2194-2204.
  • Moore AM, Kasukurthi R, Magill CK, Farhadi HF, Borschel GH, Mackinnon SE. Limitations of conduits in peripheral nerve repairs. Hand (N Y) 2009; 4(2): 180-186.
  • Mu Y, Wu F, Lu Y, Wei L, Yuan W. Progress of electrospun fibers as nerve conduits for neural tissue repair. Nanomedicine (London, England) 2014; 9(12): 1869-1883.
  • Fan W, Gu J, Hu W, Deng A, MA Y, Liu J, Ding F, Gu X. Repairing a 35-mm-long median nerve defect with a chitosan/PGA artificial nerve graft in the human: A case study. Microsurgery 2008; 28(4): 238-242.