Flag Counter
AKILLI SİSTEMLER VE UYGULAMALARI DERGİSİ
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Detection of Heart Disease Risk Utilizing Correlation Matrix, Random Forest and Permutation Feature Importance Approaches

Kalp Rahatsızlığı Riskinin Korelasyon Matrisi, Rastgele Ağaç ve Permütasyon Öznitelik Seçimi Yöntemleriyle Tespit Edilmesi

How to cite: Pehlivan S, İşler Y. Detection of heart disease risk utilizing correlation matrix, random forest and permutation feature importance approaches. Akıllı Sistemler ve Uygulamaları Dergisi (Journal of Intelligent Systems with Applications) 2020; 3(1): 29-34.

Full Text: PDF, in English.

Total number of downloads: 1648

Title: Detection of Heart Disease Risk Utilizing Correlation Matrix, Random Forest and Permutation Feature Importance Approaches

Abstract: Surface EEG measurements that can be performed in hospitals and laboratories have reached a wearable and portable level with the development of today's technologies. Artificial intelligence-assisted brain-computer interface (BCI) systems play an important role in individuals with disabilities to process EEG signals and interact with the outside world. In particular, the research is becoming widespread to meet the basic needs of individuals in need of home care with an increasing population. In this study, it is aimed to design the BCI system that will detect the hunger and satiety status of the people on the computer platform through EEG measurements. In this context, a database was created by recording EEG signals with eyes open and eyes closed by 20 healthy participants in the first stage of the study. The noise of the EEG signal is eliminated by using a low pass, high pass, and notch filters. In the classification, using Wavelet Packet Transform (WPT) with Coiflet 1 and Daubechies 4 wavelets, 77.50% accuracy was achieved in eyes closed measurement, and 81% in eyes open measurement.

Keywords: Heart disease; machine learning; metabolic measures


Başlık: Kalp Rahatsızlığı Riskinin Korelasyon Matrisi, Rastgele Ağaç ve Permütasyon Öznitelik Seçimi Yöntemleriyle Tespit Edilmesi

Özet: Hastanelerde ve laboratuvarlarda gerçekleştirilebilen yüzeysel EEG ölçümleri günümüz teknolojilerinin gelişmesiyle giyilebilir ve taşınabilir düzeye ulaşmıştır. Yapay zeka destekli beyin bilgisayar arayüzü (BCI) sistemleri engeli olan bireylerin EEG sinyallerinin işlenmesi ile dış dünyayla etkileşimde bulunmasında önemli rol oynamaktadır. Özellikle artan nüfusla evde bakım ihtiyacı olan bireylerin temel ihtiyaçlarının karşılanmasına yönelik araştırmalar yaygınlaşmaktadır. Bu çalışmada, EEG ölçümleri üzerinden kişilerin açlık ve tokluk durumunu bilgisayar ortamında tespit edecek BCI sisteminin tasarlanması amaçlanmıştır. Bu kapsamda, çalışmanın ilk aşamasında 20 sağlıklı katılımcının gözler açık, gözler kapalı EEG sinyalleri kaydedilerek veri tabanı oluşturulmuştur. Alçak geçiren, yüksek geçiren ve çentik filtreler kullanılarak EEG sinyalleri gürültüden arındırılmıştır. Sınıflandırma aşamasında, Coiflet 1 ve Daubechies 4 dalgacıklarıyla Dalgacık Paket Dönüşümü (WPT) kullanılarak gözler kapalı ölçümde %77,50, gözler açık ölçümde %81 doğruluğa erişilmiştir.

Anahtar kelimeler: Kalp rahatsızlığı; makine öğrenmesi; metabolik ölçümler


Bibliography:
  • Chu NN. Brain-computer interface technology and development: The emergence of imprecise brainwave headsets in the commercial world. IEEE Consumer Electronics Magazine 2015; 4(3): 34-41.
  • Lin BS, Pan JS, Chu TY, Lin BS. Development of a wearable motor-imagery-based brain–computer interface. Journal of Medical Systems 2016; 40(3): 71.
  • Hoffman LD, Polich J. EEG, ERPs and food consumption. Biological Psychology 1998; 48(2): 139-151.
  • An YJ, Jung KY, Kim SM, Lee C, Kim DW. Effects of blood glucose levels on resting-state EEG and attention in healthy volunteers. Journal of Clinical Neurophysiology 2015; 32(1): 51-56.
  • Al-Zubaidi A, Mertins A, Heldmann M, Jauch-Chara K, Munte TF. Machine learning based classification of restingstate fMRI features exemplified by metabolic state (hunger/satiety). Frontiers in Human Neuroscience 2019; 13: 164.
  • Emotiv Epoc+. Technical Specifications. https://emotiv.gitbook.io/epoc-user-manual/introduction-1/technical_specifications
  • Mathot S, Schreij D, Theeuwes J. OpenSesame: An open source, graphical experiment builder for the social sciences. Behavior Research Methods 2012; 44(2): 314-324.
  • Jiang X, Bian GB, Tian Z. Removal of artifacts from EEG signals: A review. Sensors 2019; 19(5): 987.
  • Amin HU, Malik AS, Ahmad RF, Badruddin N, Kamel N, Hussain M, Chooi WT. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques. Australasian Physical & Engineering Sciences in Medicine 2015; 38(1): 139-149.
  • Bilgin S. The impact of feature extraction for the classification of amyotrophic lateral sclerosis among neurodegenerative diseases and healthy subjects. Biomedical Signal Processing and Control 2017; 31: 288-294.
  • Mohammed M, Khan MB, Bashier EBM. Machine learning: algorithms and applications. Crc Press, 2016.