Flag Counter
AKILLI SİSTEMLER VE UYGULAMALARI DERGİSİ
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Adaptation to Software of Epigenetic Algorithm

Epigenetik Algoritmanın Yazılıma Uyarlanması

How to cite: Biroğul S. Adaptation to software of epigenetic algorithm. Akıllı Sistemler ve Uygulamaları Dergisi (Journal of Intelligent Systems with Applications) 2018; 1(1): 26-30.

Full Text: PDF, in Turkish.

Total number of downloads: 955

Title: Adaptation to Software of Epigenetic Algorithm

Abstract: Genetic algorithm has been used in several researches to be a successful solution algorithm. In this study, Concept of Epigenetic is presented different perspective for GA to find a better solutions and results in short time. Randomness is a matter of GA. Adaptation of the epigenetic to GA design, which is one of the research topic that have been seriously investigated in the field of medicine and biology Reduces this randomness.randomization of Epigenetic crossing and mutation shows that the procession is not lucky happened. In addition crossover and change operators in the classical GA, epicrossover and epimutation operators in EGA software,shows how epigenetic factors work and how epiheritance is possible.

Keywords: Epigenetic; genetic algortihm; epicrossover; epimutation; epiheritance


Başlık: Epigenetik Algoritmanın Yazılıma Uyarlanması

Özet: Genetik algoritmaların (GA) başarılı bir çözüm algoritması olarak olduğu birçok çalışmada ortaya konmuştur. Bu çalışmada Epigenetik kavramının GA’nın daha iyi çözüm ve daha kısa sürede sonuç bulabilmesi için farklı bir bakış açısı sunulmaktadır. GA'da rastgelelik söz konusudur. Ancak tıp ve biyolojik alanında üzerine ciddi araştırmalar yapılan konulardan biri olan epigenetiğin GA tasarımına uyarlanması bu rastgeleliği daha az hale getirmektedir. Epigenetik ile çaprazlama ve mutasyonun rastgele olması sürecin de şans eseri olduğunu göstermemektedir. Klasik GA da yer alan çaprazlama ve değişim operatörlerine ek olarak EGA yazılımında epiçaprazlama ve epideğişim operatörleri, epigenetik faktörlerin nasıl işlev gördüğü ve epikalıtımın nasıl mümkün olduğu anlatılmıştır.

Anahtar kelimeler: Epigenetik; genetik algoritma; epiçaprazlama; epideğişim; epikalıtım


Bibliography:
  • Birogul S. Implementation of frequency planning using data fusion for GSM network. PhD thesis, Gazi Universitesi, Ankara, Turkey, 2008.
  • Delcuve GP, Rastegar M, Davie JR. Epigenetic control. Journal of Cellular Physiology 2009; 219: 243-250.
  • Maynard Smith J. Models of a dual inheritance system. Journal of Theoretical Biology 1990; 143: 41-53.
  • Waddington CH. The Epigenotype. Endeavour, 1942.
  • Sweatt JD. Experience-dependent epigenetic modifications in the central nervous system. Biological Psychiatry 2009; 65: 191-197.
  • Kouzarides T. Chromatin modifications and their function. Cell 2007; 128: 693-705.
  • Metivier R, Gallais R, Tiffoche C. Cyclical DNA methylation of a transcriptionally active promoter. Nature 2008; 452: 45-50.
  • Siegmund KD, Connor CM, Campan M. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One 2007; 2(9): e895.
  • Bird A. Perceptions of epigenetic. Nature 2007; 447(7143): 396-398.
  • Szyf M. The early-life social environment and DNA methylation. Clinical Genetics 2012; 81(4): 341–349.
  • Kocak EE, Ertugrul A. Psychiatric disorders and epigenetics. Turkish Journal of Psychiatry 2012; 23(2): 130-140.
  • Jaenisch R, Bird A. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nature Genetics 2003; 33: 245-254.
  • Felsenfeld G, Groudine M. Controlling the double helix. Nature 2003; 421: 448-453, 2003.
  • Birogul S. EpiGenetic algorithm for optimization: Application to mobile network frequency planning. Arabian Journal for Science and Engineering 2016; 41(3): 883-896.
  • Weinhold B. A steep learning curve: decoding epigenetic influence on behavior and mental health. Environmental Health Perspectives 2012; 120(10): a396–a401.
  • Metivier R, Gallais R, Tiffoche C, Le Peron C, Jurkowska RZ, Carmouche RP, Ibberson D, Barath P, Demay F, Reid G, Benes V, Jeltsch A, Gannon F, Salbert G. Cyclical DNA methylation of a transcriptionally active promoter. Nature 2008; 452: 45-50.
  • Kaminsky ZA, Tang T, Wang SC. DNA methylation profiles in monozygotic and dizygotic twins. Nature Genetics 2009; 41: 240-245.
  • Richards EJ. Inherited epigenetic variation-revisiting soft inheritance. Nature Reviews Genetics 2006; 7: 395-401.
  • Birogul S, Elmas C, Cetin A. Planning of the GSM network broadcast control channel with data fusion. Expert Systems With Applications 2011; 38(3): 2421-2431.
  • Holliday R. Epigenetics: A historical overview. Epigenetics 2006; 1(2): 76-80.
  • Periyasam S, Gray A, Kille P. The epigenetic algorithm. In IEEE World Congress on Computational Intelligence. IEEE Press, New York, 2008, pp. 3228–3236.
  • Tanev I, Yuta K. Epigenetic programming: Genetic programming incorporating epigenetic learning through modification of histones. Information Sciences 2008; 178: 4469– 4481.
  • Rocha LM, Kaur J. Genotype editing and the evolution of regulation and memory, advanced in artificial life. Lecture Notes in Computer Science 2007; 4648: 63–73.