Flag Counter
AKILLI SİSTEMLER VE UYGULAMALARI DERGİSİ
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Design of 3D Digitization Integrated Robotic Arm to Help Clinical Applications

Klinik Uygulamalarda Kullanılması için 3B Sanallaştırıcı Entegreli Robotik Kol Tasarımı

How to cite: Selek MB, Solmaz A, Çetintaş E, Uğur K, İşler Y. Design of 3d digitization integrated robotic arm to help clinical applications. Akıllı Sistemler ve Uygulamaları Dergisi (Journal of Intelligent Systems with Applications) 2019; 2(2): 162-166.

Full Text: PDF, in English.

Total number of downloads: 907

Title: Design of 3D Digitization Integrated Robotic Arm to Help Clinical Applications

Abstract: Thanks to developing technology, robots have been integrated into many parts of daily life. Robots are called programmable, multifunctional, work, and timesaving devices. In this study, it is aimed to enhance a robotic arm to become a new tool for transferring an object to the virtual environment by integrating a three-dimensional digitizing property to the robotic arm. The robotic arm is developed using the software of Autodesk Fusion 360 and its physical prototype is implemented using PLA filament in three dimensional printers. A general-purpose microcontroller board of Arduino Mega 2560 model connected to motor drivers is used to control stepper motors that conduct robotic arm actions. Encoders used in the threedimensional digitizer are connected to digital pins of the Arduino board to calculate the X-Y-Z coordinates of the object in the space. The proposed system is controlled via the interface program, which is developed in Python programming language. As a result, a device to use in clinical applications is available in our biomechanics laboratuary, now.

Keywords: Robotic arm; 3D digitizer; clinical applications


Başlık: Klinik Uygulamalarda Kullanılması için 3B Sanallaştırıcı Entegreli Robotik Kol Tasarımı

Özet: Gelişen teknoloji sayesinde robotlar hayatın birçok bölümüne entegre olmuştur. Robotlar programlanabilir, çok fonksiyonlu, işten ve zamandan tasarruf sağlayan cihazlar olarak adlandırılır. Bu çalışmada robotik bir kola üç boyutlu sayısallaştırıcı özelliği eklenerek, bir nesnenin sanal ortama aktarılması için bu robotik kolun yeni bir araç haline getirilmesi hedeflenmiştir. Robotik kolun mekanik tasarımı Autodesk Fusion 360 yazılımı ile geliştirilmiş ve üç boyutlu yazıcılarda PLA malzemesi ile robotik kol fiziksel prototipi gerçekleştirilmiştir. Robotik kolun hareketlerini yapacak olan step motorların kontrolü için motor sürücülerinin monte edildiği Arduino Mega 2560 modeli genel amaçlı bir mikrodenetleyici kartı kullanılmıştır. Nesnenin uzaydaki X-Y-Z koordinatlarını hesaplayabilmek için üç boyutlu sayısallaştırıcıda kullanılan enkoderler Arduino’nun dijital pinlerine bağlanmıştır. Python ile geliştirilen ara yüz programı kullanılarak geliştirilen sistem kontrol edilmiştir. Sonuç olarak, özellikle klinik uygulamalarda kullanılabilecek bir cihaz biyomekanik laboratuvarına kazandırılmıştır.

Anahtar kelimeler: Robotik kol; 3B sayısallaştırıcı; klinik uygulamalar


Bibliography:
  • Beasley RA. Medical robots: Current systems and research directions. Journal of Robotics 2012; 2012: 401613.
  • Avgousti S, Christoforou EG, Panayides AS, Voskarides S, Novales C, Nouaille L, Pattichis CS, Vieyres P. Medical telerobotic systems: Current status and future trends. BioMedical Engineering OnLine 2016; 15(1): 96.
  • Ding C, Saw CB, Timmerman RD. Cyberknife stereotactic radiosurgery and radiation therapy treatment planning system. Medical Dosimetry 2018; 43(2): 129-140.
  • Blyth MJG, Anthony I, Rowe P, Banger MS, MacLean A, Jones B. Robotic arm-assisted versus conventional unicompartmental knee arthroplasty: Exploratory secondary analysis of a randomized controlled trial. Bone & Joint Research 2017; 6(11): 631-639.
  • Cardinale F, Rizzi M, d'Orio P, Casaceli G, Arnulfo G, Narizzano M, Scorza D, De Momi E, Nichelatti M, Redaelli D, Sberna M, Moscato A, Castana L. A new tool for touch-free patient registration for robot-assisted intracranial surgery: Application accuracy from a phantom study and a retrospective surgical series. Neurosurgical Focus 2017; 42(5): E8.
  • Brandmeir NJ, Savaliya S, Rohatgi P, Sather M. The comparative accuracy of the ROSA stereotactic robot across a wide range of clinical applications and registration techniques. Journal of Robotic Surgery 2018; 12(1): 157-163.
  • Liu HS, Duan SJ, Liu SD, Jia FS, Zhu LM, Liu MC. Robot-assisted percutaneous screw placement combined with pelvic internal fixator for minimally invasive treatment of unstable pelvic ring fractures. International Journal of Medical Robotics and Computer Assisted Surgery 2018; 14(5): 1-8.
  • Prokhorenko L, Klimov D, Mishchenkov D, Poduraev Y. Surgeon–robot interface development framework. Computers in Biology and Medicine 2020; 120: 103717.
  • Bi Z, Wang X. Computer-Aided Design, and Manufacturing. Wiley-ASME Press Series, 2020.
  • Gauthier S, Puech W, Beniere R, Subsol G. Analysis of digitized 3D mesh curvature histograms for reverse engineering. Computers in Industry 2017; 92-93: 67-83.
  • Mathys A, Brecko J, Semal P. Comparing 3D digitizing technologies: What are the differences? In 2013 Digital Heritage International Congress (DigitalHeritage), October 28-November 1, 2013, Marseille, France, pp. 201–204.
  • Pieraccini M, Guidi G, Atzeni C. 3D digitizing of cultural heritage. Journal of Culttural Heritage 2001; 2(1): 63–70.
  • Arduino. Arduino Mega 2560 Datasheet. In Power, 2015.
  • Allegro MicroSystems. DMOS microstepping driver with translator and overcurrent protection. 2017, pp. 1–22.
  • Khan TA, Taj TA, Ijaz I. Hybrid stepper motor and its controlling techniques a survey. In Proceedings of the 2014 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference, February 3-5, 2014, St. Petersburg, Russia, pp. 79–83.