Flag Counter
AKILLI SİSTEMLER VE UYGULAMALARI DERGİSİ
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Microscopic Image Segmentation Based on Swarm Intelligence Optimization Algorithms

Sürü Zekası Optimizasyon Algoritmaları Tabanlı Mikroskobik Görüntü Segmentasyonu

How to cite: Ayas S, Doğan H, Gedikli E, Ekinci M. Microscopic image segmentation based on swarm intelligence optimization algorithms. Akıllı Sistemler ve Uygulamaları Dergisi (Journal of Intelligent Systems with Applications) 2019; 2(2): 124-130. DOI: 10.54856/jiswa.201912081

Full Text: PDF, in Turkish.

Total number of downloads: 1366

Title: Microscopic Image Segmentation Based on Swarm Intelligence Optimization Algorithms

Abstract: The World Health Organization suggests the visual examination of stained sputum smear samples as a preliminary and basic diagnostic technique for diagnosing tuberculosis which is the most common infectious disease in the world. Due to the fact that the visual examination of slide samples performed by expert laboratory technicians requires much time and the process is prone to mistake, an accurate diagnosis of disease is provided with computer aided automatic diagnosis methods. In this study, the usage of swarm intelligence algorithms based on entropy information are proposed for detecting the tuberculosis bacilli as an ovelap approach in segmentation of microscopic images. The microscopic images used in the study are taken from smear samples in which the background concentration is low and bacilli concentration is low and high. An optimum threshold value in gray-level microscopic image is determined using the bi-level entropy based Particle Swarm Optimization, Firefly Algorithm, Cuckoo Search Optimization and Flower Pollination Algorithm. The acquired visual results show that the proposed swarm intelligence algorithms are quite successful in segmentation of microscopic images.

Keywords: Mycobacterium tuberculosis; microscopic image segmentation; swarm intelligence algorithms


Başlık: Sürü Zekası Optimizasyon Algoritmaları Tabanlı Mikroskobik Görüntü Segmentasyonu

Özet: Dünya Sağlık Örgütü, dünyanın en yaygın enfeksiyon hastalığı olan tüberküloz hastalığının teşhisi için başlıca teşhis tekniği olarak boyalı balgam yayma örneklerinin görsel incelemesini önermektedir. Uzman laboratuvar teknisyenleri tarafından yayma örneklerinin görsel incelenmesi zaman aldığından ve hataya meyilli olduğundan dolayı bilgisayarla görmeye dayalı otomatik tanı yöntemleri ile hastalığın daha doğru teşhis edilmesi sağlanmaktadır. Bu çalışmada tüberküloz bakterilerinin belirlenmesi amacıyla mikroskobik görüntülerin bölütlenmesinde yeni bir yaklaşım olarak entropi bilgisine dayalı sürü zekası optimizasyon algoritmaları kullanılması önerilmektedir. Çalışmada kullanılan mikroskobik görüntüler, arka plan yoğunluğunun düşük ve basillerin yüksek ve düşük yoğunlukta olduğu yayma örneklerinden alınmıştır. Gri seviyeye çevrilmiş mikroskobik görüntülerde uygun tek bir eşik değeri, iki seviyeli entropi tabanlı Parçacık Sürü Optimizasyonu, Ateş Böceği Algoritması, Guguk Kuşu Algoritması ve Çiçek Tozlaşması Algoritması kullanılarak belirlenmiştir. Elde edilen görsel sonuçlar, önerilen sürü zekası optimizasyon algoritmalarının mikroskobik görüntüleri bölütlemede oldukça başarılı olduğunu göstermektedir.

Anahtar kelimeler: Mycobacterium tuberculosis; mikroskobik görüntü bölütleme; sürü zekası algoritmaları


Bibliography:
  • World Health Organization. Global tuberculosis report 2015. 2015. Retrieved from http://apps.who.int/iris/bitstream/10665/191102/1/9789241565059_eng.pdf at December 2016.
  • Central TB Division. Module for laboratory technicians. 2005. Retrieved from https://nrhm.gujarat.gov.in/images/pdf/module-for-laboratorytechnician.pdf at December 2016.
  • Palomino JC, Leao SC, Ritacco V. Tuberculosis 2007-From basic science to patient care. Retrieved from http://www.tuberculosistextbook.com/index.htm at December 2016.
  • Nguyen TN, Wells CD, Binkin NJ, Pham DL, Nguyen VC. The importance of quality control of sputum smear microscopy: The effect of reading errors on treatment decisions and outcomes. The International Journal of Tuberculosis and Lung Disease 1999; 3(6): 483-487.
  • Forero MG, Sroubek F, Cristobal G. Identification of Tuberculosis Bacteria Based on Shape and Color," Real-time Imaging 2004; 10(4): 251-262.
  • Costa MG, Costa Filho CF, Sena JF, Salem J, de Lima MO. Automatic identification of mycobacterium tuberculosis with conventional light microscopy. In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, August 21-24, 2008, Vancouver, Canada, pp. 382-385.
  • Raof RAA, Salleh Z, Sahidan SI, Mashor MY, Noor SM, Idris FM, Hasan H. Color thresholding method for image segmentation algorithm of Ziehl-Neelsen sputum slide images. In 2008 5th International Conference on Electrical Engineering, Computing Science and Automatic Control, November 12-14, 2008, Mexico City, Mexico, pp. 212-217.
  • Raof RAA, Mashor MY, Ahmad RB, Noor SSM, Osman MK. Comparison of colour thresholding method using RGB and HSI information for Ziehl-Neelsen sputum slide images. In 10th International Conference on Information Sciences Signal Processing and their Applications, May 10-13, 2010, Kuala Lumpur, Malaysia, pp. 724-727.
  • Sadaphal P, Rao J, Comstock GW, Beg MF. Image processing techniques for identifying mycobacterium tuberculosis in Ziehl-Neelsen stains. The International Journal of Tuberculosis and Lung Disease 2008; 12(5): 579-582.
  • Siena I, Adi K, Gernowo R, Mirnasari N. Development of algorithm tuberculosis bacteria identification using color segmentation and neural networks. International Journal of Video and Image Processing and Network Security 2012; 12(4): 9-13.
  • Khutlang R, Krishnan S, Dendere R, Whitelaw A, Veropoulos K, Learmonth G, Douglas TS. Classification of mycobacterium tuberculosis in images of ZN-stained sputum smears. IEEE Transactions on Information Technology in Biomedicine 2010; 14(4): 949-957.
  • Ayas S, Dogan H, Gedikli E, Ekinci M. Microscopic image segmentation based on firefly algorithm for detection of tuberculosis bacteria. In 2015 23nd Signal Processing and Communications Applications Conference (SIU), May 16-19, 2005, Malatya, Turkey, pp. 39-43.
  • Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. In 6th International Symposium on Micro Machine and Human Science, October 4-6, 1995, Nagoya, Japan.
  • Yang XS. Nature-Inspired Metaheuristic Algorithms. 2nd edition, Luniver Press, 2010.
  • Yang XS, Deb S. Cuckoo search via Levy flights. In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), December 9-11, 2009, Coimbatore, India, pp. 210-214.
  • Yang XS. Flower pollination algorithm for global optimization. In International Conference on Unconventional Computing and Natural Computation, September 3-7, 2012, France, pp. 240-249.
  • Kapur JN, Sahoo PK, Wong AKC. A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision, Graphics, and Image Processing 1985; 29(3): 273-285.
  • CostaFilho CFF, Levy PC, Xavier CM, Costa MGF, Fujimoto LBM, Salem J. Mycobacterium tuberculosis recognition with conventional microscopy. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, August 28-September 1, 2012, San Diego, CA, USA, pp. 6263-6268.