Flag Counter
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893

Implementation of Harris Corner Detection Algorithm for Volumetric Images

Harris Köşe Bulma Algoritmasının Hacimsel Görüntüler için Uygulanması

How to cite: Öztürk CN, Albayrak S. Implementation of harris corner detection algorithm for volumetric images. J Intell Syst Appl 2018; 1(1): 18-22.

Full Text: PDF, in Turkish.

Total number of downloads: 512

Title: Implementation of Harris Corner Detection Algorithm for Volumetric Images

Abstract: More effective detection of corner points in three dimensional (3-D) volumetric images can be possible through expansion of Harris corner detection algorithm, which run in two dimensional (2-D) images, into third dimension. In this study, the standard algorithm of Harris that detected corner points in 2-D slices and its 3-D version were implemented in the scale-space to determine the corner points of volumetric object images. The results obtained in sample object images with 2-D and 3-D methods that used different approaches for scale-space construction were qualitatively assessed.

Keywords: Volumetric image; 3-D Harris corner detection; scale-space construction; qualitative analysis


Başlık: Harris Köşe Bulma Algoritmasının Hacimsel Görüntüler için Uygulanması

Özet: Üç boyutlu (3-B) hacimsel görüntüler için daha etkin köşe noktası tespit etmek iki boyutlu (2-B) görüntülerde çalışan Harris köşe bulma algoritmasının üçüncü boyuta genişletilmesiyle mümkün olabilir. Bu çalışmada hacimsel nesne görüntülerindeki köşe noktalarını belirlemek için 2-B kesitlerdeki köşe noktalarını bulan standart Harris algoritmasıyla bunun 3-B uyarlaması ölçek uzayında uygulanmıştır. Ölçek uzayı oluşturmada farklı yaklaşımlar kullanan 2-B ve 3-B yöntemler ile örnek nesne görüntüleri üzerinde elde edilen sonuçlar nitel olarak değerlendirilmiştir.

Anahtar kelimeler: Hacimsel görüntü; 3-B Harris köşe bulma; ölçek uzayı oluşturma; nitel değerlendirme


Bibliography:
  • Harris C, Stephens M. A combined corner and edge detector. In Alvey Vision Conference, 1998, 15: 50.
  • Moravec HP. Visual mapping by a robot rover. In 6th International Joint Conference on Artificial Intelligence, 1979, 1: 598600.
  • Schmid C, Mohr R, Bauckhage C. Comparing and evaluating interest points. In IEEE 6th International Conference on Computer Vision, 1998, pp. 230-235.
  • Tuytelaars T, Mikolajczyk K. Local invariant feature detectors: A survey. Foundations and Trends in Computer Graphics and Vision 2008; 3(3): 177-280.
  • Farag AA. Chapter 9: Geometric features extraction. In Biomedical Image Analysis: Statistical and Variational Methods, Cambridge University Press, UK, 2014.
  • Laptev I, Lindeberg T. On space-time interest points. International Journal of Computer Vision 2005; 64(2-3): 107-123.
  • Sipiran I, Bustos B. Harris 3D: A robust extension of the harris operator for interest point detection on 3D meshes. The Visual Computer 2011; 27(11): 963-976.
  • Yu TH, Woodford OJ, Cipolla R. A performance evaluation of volumetric 3D interest point detectors. International Journal of Computer Vision 2013; 102(1-3): 180-197.
  • Dollar P, Rabaud V, Cottrell G, Belongie S. Behaviour recognition via sparse spatio-temporal features. In 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, 2005, pp.65-72.
  • Shilane P, Min P, Kazhdan M, Funkhouser T. The Princeton shape benchmark. In IEEE Proceedings in Shape Modeling Applications, 2004, pp. 167-178.
  • Princeton Shape Retrieval and Analysis Group. Princeton Shape Benchmark, http://shape.cs.princeton.edu/benchmark/