Flag Counter
AKILLI SİSTEMLER VE UYGULAMALARI DERGİSİ
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Error Reduction In The Vehicle Wheel Rim Packaging With Image Processing And Ann

Görüntü İşleme Ve YSA Kullanarak Araç Jantları Paketlenmesinin Hatasızlaştırılması

How to cite: Gökay G, Yıldırım T. Error reduction in the vehicle wheel rim packaging with image processing and ann. Akıllı Sistemler ve Uygulamaları Dergisi (Journal of Intelligent Systems with Applications) 2019; 2(1): 80-84. DOI: 10.54856/jiswa.201905069

Full Text: PDF, in Turkish.

Total number of downloads: 589

Title: Error Reduction In The Vehicle Wheel Rim Packaging With Image Processing And Ann

Abstract: The product quality is provided by the product control companies during the period from the initial phase. Of manufacturing to packaging in many companies. In this study, it is aimed to carry out product control with an image processing based algorithm to prevent model mixes that are loaded on pallets to be packed and cargoed while being controlled by the operators according to the rim models. In the method, a camera located at a height of 5 meters from the ground is used, and the features of the rims in the ground are extracted trained by using artificial neural networks. Attempted to prevent mixing in the backplane.

Keywords: Artificial neural networks; feature extraction; wheel rim detection; image processing; production control; bag of features


Başlık: Görüntü İşleme Ve YSA Kullanarak Araç Jantları Paketlenmesinin Hatasızlaştırılması

Özet: Seri üretim yapan firmalarda ürün kalitesi üretilen ürünün başlangıç safhasından paketlenmesine kadar geçen sürede çeşitli kontrol yöntemleri ile sağlanmaktadır. Bu çalışmada ise jant üretimi yapılan boyahaneden çıkan jantlar modellerine göre operatörler tarafından kontrol edilerek kargolanmak üzere paletlere yüklenip paketlenirken meydana gelebilecek model karışmalarını engellemek için görüntü işleme tabanlı bir algoritma ile ürün kontrolü yapılması hedeflenmiştir. Kullanılan yöntemde yerden 5 metre yükseklikte bulunan bir kamera ile yerde bulunan jantlarının özellikleri çıkartılarak yapay sinir ağları ile bu özellikler eğitilmiş ve arka planda oluşan karışmalar önlenmeye çalışılmıştır.

Anahtar kelimeler: Yapay sinir ağları; özellik çıkarımı; jant tespiti; görüntü işleme; üretim kontrolü; özellik çantası


Bibliography:
  • Gonzalez RC, Woods RE, Eddins SL. Digital Image Processing Using MATLAB. Prentice Hall, Upper Saddle River, NJ, USA, 2003.
  • Atherton TJ, Kerbyson DJ. Size invariant circle detection. Image and Vision Computing 1999; 17(11): 795-803.
  • Jia LQ, Peng CZ, Liu HM, Wang ZH. A fast randomized circle detection algorithm. In 2011 4th International Congress on Image and Signal Processing, October 15-17, 2011, Shanghai, China, pp. 820–823.
  • Davies ER. Chapter 10: Circle detection. Book chapter in Machine Vision: Theory, Algorithms, Practicalities (editors: . Chapter 10. 3rd Edition. Morgan Kauffman Publishers, 2005, pp. 283-313.
  • Csurka G, Dance CR, Fan L, Willamowski J, Bray C. Visual categorization with bags of keypoints. In In Workshop on Statistical Learning in Computer Vision (ECCV), 2004, pp. 1–22.
  • Bay H, Ess A, Tuytelaars T, Van Gool L. SURF: Speeded up robust features. Computer Vision and Image Understanding (CVIU) 2008; 110(3): 346–359.
  • Lera G, Pinzolas M. Neighborhood based Levenberg-Marquardt algorithm for neural network training. IEEE Transactions on Neural Networks 2002; 13(5): 1200-1203.
  • Levenberg K. A method for the solution of certain problems in least squares. Quarterly of Applied Mathematics 1944; 2: 164-168.
  • MathWorks Inc. MATLAB for Image Processing and Computer Vision, 2007, Retrieved from https://www.mathworks.com/solutions/image-video-processing.html
  • Zdonik S, Ning P, Shekhar S, Katz J, Wu X. Moving Object Detection Using Background Subtraction. 2014.