Flag Counter
AKILLI SÄ°STEMLER VE UYGULAMALARI DERGÄ°SÄ°
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Recognition of Real-World Texture Images Under Challenging Conditions With Deep Learning

Derin Öğrenme Kullanarak Gerçek Dünya Doku Görüntülerinin Zorlu Koşullarda Tanınması

How to cite: Yıldırım Ã, Uçar A, BaloÄŸlu UB. Recognition of real-world texture images under challenging conditions with deep learning. Akıllı Sistemler ve Uygulamaları Dergisi (Journal of Intelligent Systems with Applications) 2018; 1(2): 122-126.

Full Text: PDF, in Turkish.

Total number of downloads: 877

Title: Recognition of Real-World Texture Images Under Challenging Conditions With Deep Learning

Abstract: Images obtained from the real world environments usually have various distortions in image quality. For example, when an object in motion is filmed, or when an environment is being filmed on the move, motion tracking effects occur on the image. Increasing the recognition performance of expert systems, which perform image recognition on data obtained under such conditions, is an important research area. In this study, we propose a Convolutional Neural Network (CNN) based Deep System Model (CNN-DSM) for accurate classification of images under challenging conditions. In the proposed model, a new layer is designed in addition to the classical CNN layers. This layer works as an enhancement layer. For the performance evaluations, various real world surface images were selected from the Curet database. Finally, results are presented and discussed.

Keywords: Deep learning; convolutional nerural networks; real-world texture images


Başlık: Derin Öğrenme Kullanarak Gerçek Dünya Doku Görüntülerinin Zorlu Koşullarda Tanınması

Özet: Gerçek dünyadan elde edilen görüntüler üzerinde çeşitli kalite bozulmaları meydana gelebilmektedir. Örneğin hareket halindeki bir nesnenin görüntülenmesi veya bir ortamın hareket halindeyken görüntülenmesi görüntü üzerinde hareket izi etkisi oluşturmaktadır. Bu tür şartlarda elde edilen görüntü verileri üzerinde tanıma işlemi gerçekleştiren uzman sistemlerin yüksek tanıma performansı sağlaması önemli bir çalışma konusudur. Bu makale çalışmasında, zorlu şartlar altında görüntülerin yüksek başarımla sınıflandırılması için Konvolüsyonel Sinir Ağı (KSA) tabanlı bir Derin Sistem Modeli (KSA-DSM) önerilmiştir. Önerilen bu modelde klasik KSA katmanlarına ek olarak bozulmuş görüntü verilerini katmanlara süren bir artırma katmanı tasarlanmıştır. Çalışmanın performans testleri için gerçek dünyadan elde edilen çeşitli yüzey görüntüleri Curet veri tabanından seçilerek kullanılmıştır. Elde edilen sonuçlar sunularak tartışılmıştır.

Anahtar kelimeler: Derin öğrenme; konvolüsyonel sinir ağı; gerçek dünya doku görüntüleri


Bibliography:
  • Azad P. Visual perception for manipulation and imitation in humanoid robots. COSMOS vol. 4 (Editors: Dillmann R, Nakamura Y, Schaal S, Vernon D.) Springer-Verlag Berlin Heidelberg, Germany, 2009.
  • Manduchi R, Castano A, Talukder A, Matthies L. Obstacle detection and terrain classification for autonomous off-road navigation. Autonomous Robots 2005; 18(1): 81-102.
  • Dana KJ, van Ginneken B, Nayar SK, Koenderink JJ. Reflectance and texture of real-world surfaces. ACM Transactions On Graphics (TOG) 1999; 18(1): 1-34.
  • Varma M, Zisserman A. A statistical approach to material classification using image patch exemplars. IEEE Transactions on Pattern Analysis and Machine Intelligence 2009; 31(11): 2032-2047.
  • Sharan L, Rosenholtz R, Adelson E. Material perception: What can you see in a brief glance? Journal of Vision 2009; 9(8): 784.
  • Tivive FHC, Bouzerdoum A. Texture classification using convolutional neural networks. In TENCON 2006 - 2006 IEEE Region 10 Conference, November 14-17, 2006, Hong Kong, China.
  • Cimpoi M, Maji S, Kokkinos I, Vedaldi A. Deep filter banks for texture recognition, description, and segmentation. International Journal of Computer Vision 2016; 118(1): 65-94.
  • Whyte O, Sivic J, Zisserman A, Ponce J. Non-uniform deblurring for shaken images. International Journal of Computer Vision 2012; 98(2): 168-186.
  • Zheng S, Xu L, Jia J. Forward motion deblurring. In Proceedings of the IEEE International Conference on Computer Vision, December 1-8, 2013, Sydney, NSW, Australia, pp. 1465-1472.
  • Hyun Kim T, Ahn B, Mu Lee K. Dynamic scene deblurring. In Proceedings of the IEEE International Conference on Computer Vision, December 1-8, 2013, Sydney, NSW, Australia, pp. 3160-3167.
  • Pan J, Hu Z, Su Z, Lee HY, Yang MH. Soft-segmentation guided object motion deblurring. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 27-30, 2016, Las Vegas, NV, USA, pp. 459-468.
  • Bengio Y. Learning deep architectures for AI. Foundations and trends in Machine Learning 2009; 2(1): 1-55.
  • Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25 (NIPS 2012), 2012, vol. 25, pp. 1097-1105.
  • LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 1998; 86(11): 2278-2324.
  • Lawrence S, Giles CL, Tsoi AC, Back AD. Face recognition: A convolutional neural-network approach. IEEE Transactions on Neural Networks 1997; 8(1): 98-113.
  • Fasel B. Robust face analysis using convolutional neural networks. In IEEE Proceedings of 16th International Conference on Pattern Recognition, August 11-15, 2002, Quebec City, QC, Canada, vol. 2, pp. 40-43.
  • Ji S. 3D convolutional neural networks for human action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 2013; 35(1): 221-231.
  • Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, FeiFei L. Large-scale video classification with convolutional neural networks. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, OH, USA, pp. 1725-1732.
  • Jarrett K, Kavukcuoglu K, Ranzato M, LeCun Y. What is the best multi-stage architecture for object recognition? In IEEE International Conference on Computer Vision (ICCV'09), September 29-October 2, 2009, Kyoto, Japan, pp. 2146-2153.
  • Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, OH, USA, pp. 580-587.
  • Abdel-Hamid O, Deng L, Yu D. Exploring convolutional neural network structures and optimization techniques for speech recognition. In Interspeech, 2013, Lyon, France, pp. 3366-3370.
  • Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D. Mastering the game of Go with deep neural networks and tree search. Nature 2016; 529: 484-489.