Flag Counter
AKILLI SÄ°STEMLER VE UYGULAMALARI DERGÄ°SÄ°
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

A Simulation Study on Controlling Excitation Current of Synchronous Motor and Reactive Power Compensation via PSO Based PID and PID Controllers

PSO Tabanlı PID ve PID Denetleyiciler ile Senkron Motorun Uyartım Akım Denetimi ve Reaktif Güç Kompanzasyonu Benzetim Çalışması

How to cite: Gani A, Açıkgöz H, KeçecioÄŸlu ÃF, Kılıç E, Åžekkeli M. A simulation study on controlling excitation current of synchronous motor and reactive power compensation via pso based pid and pid controllers. Akıllı Sistemler ve Uygulamaları Dergisi (Journal of Intelligent Systems with Applications) 2018; 1(2): 103-110.

Full Text: PDF, in English.

Total number of downloads: 753

Title: A Simulation Study on Controlling Excitation Current of Synchronous Motor and Reactive Power Compensation via PSO Based PID and PID Controllers

Abstract: The increasing need for energy requires using existing energy sources more efficiently. Because it is the active power that supplies useful power for industrial facilities, reactive power must be minimized, and supplied by another source instead of electrical grid. Therefore, reactive power supplied by the grid can be reduced via by correcting power factor of the grid. In electrical power systems, power factor correction is called reactive power compensation. Generating reactive power during excessive excitation, synchronous motors are used as dynamic compensators in power systems. Synchronous motors are more cost-effective for industrial facilities when they are used to generate mechanic power and compensate reactive power, which increases the efficiency of industrial facilities. There are various studies focusing on the efficiency, capacity and stability of the power system via reactive power compensation in the literature. In today's world, there are numerous optimization techniques inspired by biological systems. One of these techniques is Particle Swarm Optimization (PSO) inspired by the movements of swarms of birds. This study focuses on the reactive power compensation of a power system by controlling the excitation current of a synchronous motor via PSO based PID and Ziegler Nichols (Z-N) based PID controllers.

Keywords: Excitation current; particle swarm optimization


Başlık: PSO Tabanlı PID ve PID Denetleyiciler ile Senkron Motorun Uyartım Akım Denetimi ve Reaktif Güç Kompanzasyonu Benzetim Çalışması

Özet: Enerji talebinin her geçen gün daha da artması mevcut enerji kaynaklarının verimli bir şekilde kullanılmasını gerektirmektedir. Endüstriyel tesislerde harcanan yararlı güç aktif güç olduğundan bu tesislerde tüketilen reaktif güç minimuma indirilmeli, ya da bu ihtiyaç şebeke yerine başka bir kaynaktan sağlanmalıdır. Dolayısıyla şebekenin güç faktörü düzeltilerek kaynaktan çekilen reaktif güç azaltılır. Elektrik güç sistemlerinde güç faktörü düzeltilmesi işlemi reaktif güç kompanzasyonu olarak adlandırılmaktadır. Aşırı uyartılması durumunda kapasitif reaktif güç üreten senkron motorlar güç sistemlerinde dinamik kompanzatör olarak kullanılırlar. Senkron motorun hem mekanik güç üretmede hem de reaktif güç kompanzasyonunda kullanılması endüstriyel tesisler için daha ekonomik olmaktadır. Bu durum endüstriyel tesislerin verimini arttırmaktadır. Literatürde reaktif güç kompanzasyonu ile güç sisteminin verimliliğini, kapasitesini ve değişik çalışma koşullarında kararlılığını sağlayabilmek için birçok çalışma bulunmaktadır. Günümüzde biyolojik sistemlerden esinlenilmiş birçok optimizasyon tekniği bulunmaktadır. Bu tekniklerden biri de kuş sürülerinin davranışlarından esinlenerek ortaya çıkarılmış bir optimizasyon yöntemi olan Parçacık Sürüsü Optimizasyonudur (PSO). Bu çalışmada PSO tabanlı PID ve Ziegler Nichols (Z-N) tabanlı PID denetleyiciler ile senkron motorun uyartım akımı denetlenerek bir güç sisteminin reaktif güç kompanzasyonu yapılmıştır.

Anahtar kelimeler: Uyartım Akımı; parçacık sürü optimizasyonu


Bibliography:
  • Bayindir R, Yesilbudak M, Colak I, Sagiroglu S. Excitation current forecasting for reactive power compensation in synchronous motors: A data mining approach. In 11th International Conference on Machine Learning and Applications (ICMLA), December 12-15, 2012, Boca Raton, FL, USA, pp. 521-525.
  • Mekhamer SF, El-Hawary ME, Mansour MM, Moustafa MA, Soliman SA. State of the art in optimal capacitor allocation for reactive power compensation in distribution feeders. Large Engineering Systems Conference on Power Engineering (LESCOPE 02), June 26-28, 2002, Halifax, NS, Canada, pp. 61-75.
  • Bal G, Colak I. Reactive power compensator using constant capacitor and thyristor controlled reactor. Gazi University Journal of Institute of Science and Technology 1995; 8(2): pp. 9-15.
  • Sagiroglu S, Colak I, Bayindir R. Power factor correction technique based on artificial neural networks. Energy Conversion and Management 2006; 47(18-19): 3204-3215.
  • Colak I, Bayindir R. A novel dynamic reactive power compensator based on PIC. Electric Power Components and Systems 2005; 33(8): 861-876.
  • Al-Hamrani MM, von Jouanne A, Wallace A. Power factor correction in industrial facilities using adaptive excitation control of synchronous machine. In Conference Record of the Annual of Pulp and Paper Industry Technical Conference, June 17-21, 2002, Toronto, ON, Canada, pp. 148–154.
  • Bayindir R, Sagiroglu S, Colak I. An intelligent power factor corrector for power system using artificial neural networks. Electric Power Systems Research 2009; 79(1): 152-160.
  • Colak I, Bayindir R, Bay OF. Reactive power compensation using a fuzzy logic controlled synchronous motor. Energy Conversion and Management 2003; 44(13): 2189-2204.
  • Kamaraju V. Synchronous motors for reactive power compensation and power factor improvement. Book Chapter in Electrical Power Distribution Systems, 2009, pp. 128-130.
  • Li C, Lian J. The application on immune genetic algorithm in PID parameter optimization for level control system. In IEEE International Conference on Automation and Logistics, August 18-21, 2007, Jinan, China, pp. 782-786.
  • Aygun H, Demirel H. Comparison of PSO-PID, FLC and PID in a circulating fluidized bed boiler. In 7th International Conference on Electrical and Electronics Engineering (ELECO), December 1-4, 2011, Bursa, Turkey pp. II-376-II-380.
  • Karaboga D, Akay B. Artificial bee colony (ABC) algorithm on training artificial neural networks. In IEEE 15th Signal Processing and Communications Applications (SIU), June 11-13, 2007, Eskisehir, Turkey.
  • Pillay N, Govender P. A particle swarm optimization approach for model independent tuning of PID control loops. AFRICON 2007, September 26-28, 2007, Windhoek, South Africa.
  • Luo Y. The controlling parameters tuning and its application of fractional order PID bacterial foraging based oriented by particle swarm optimization. In IEEE International Conference on Intelligent Computing and Intelligent Systems, November 20-22, 2009, Shanghai, China, pp. 4-7.
  • Shabib G, Moslem AG, Rashwan AM. Optimal tuning of PID controller for AVR system using modified particle swarm optimization recent advance in neural networks. In Recent Advances in Neural Networks, Fuzzy Systems & Evolutionary Computing, 2005, pp. 104-110.
  • Chang WD, Shih SP. PID controller design of nonlinear systems using an improved particle swarm optimization approach. Communications in Nonlinear Science and Numerical Simulation 2010; 15: 3632-3639.
  • Bayindir R, Demirbas S, Sesveren O. Design and implementation of an intelligent simulator for reactive power compensation. Journal of the Faculty of Engineering and Architecture of Gazi University 2008; 23(3): 681-688.
  • Irmak E, Bayindir R, Kose A. Design and experimental analysis of an advanced static VAR compensator with computer aided control. ISA Transactions 2016; 64: 384-393.
  • Sesveren O, Bayindir R. An intelligent tool for ANN based power factor correction. In 12th International Conference on Machine Learning and Applications (ICMLA), December 4-7, 2013, Miami, FL, USA, pp.218-223.
  • Bayindir R, Colak I, Kabalci E, Gorgun A. PID controlled synchronous motor for power factor correction. In International Conference on Power Engineering, Energy and Electrical Drives, March 18-20, 2009, Lisbon, Portugal, pp. 408-412.
  • Gani A, Kececioglu OF, Acikgoz H, Yildiz C, Sekkeli M. A study on power factor correction using fuzzy logic excitation control of synchronous motor. In 3rd International Conference on Advanced Technology & Sciences (ICAT'16), September 1-3, 2016, Konya, Turkey.
  • Bayindir R, Colak I, Sagiroglu S, Kahraman HT. Application of adaptive artificial neural network method to model the excitation currents of synchronous motors. In 11th International Conference on Machine Learning and Applications (ICMLA), December 12-15, 2012, Boca Raton, FL, USA, pp. 498-502.
  • Acikgoz H, Gani A, Kececioglu OF, Sekkeli M. Sivi sicaklik denetiminde PSO tabanli PID denetleyicinin basariminin incelenmesi. In Otomatik Kontrol Ulusal Toplantisi (TOK), September 11-13, 2014, Kocaeli, Turkey, pp. 1039-1043.
  • Kennedy J, Eberhart R. Particle swarm optimization. In IEEE International Conference on Neural Networks, November 27-December 1, 1995, Perth, WA, Australia, pp. 1942-1948.
  • Adel T, Abdelkader C. A particle swarm optimization approach for optimum design of PID controller for nonlinear systems. In International Conference on Electrical Engineering and Software Applications (ICEESA), March 21-23, 2013, Hammamet, Tunisia.
  • Partillo AA, Frye M, Qian C. Particle swarm optimization for PID tuning of a BLDC motor. In IEEE International Conference on Systems, Man and Cybernetics (SMC), October 11-14, 2009, San Antonio, TX, USA, pp. 3917-3922.