Flag Counter
AKILLI SİSTEMLER VE UYGULAMALARI DERGİSİ
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Design Optimization of Low-Pass Filter with Exponential Transmission Lines Using Differential Evolutionary Algorithm

Diferansiyel Evrim Algoritması Kullanılarak Eksponansiyel Hatlar ile Alçak Geçiren Filtre Tasarımı

How to cite: Belen A, Güneş F, Belen MA, Moule MR. Design optimization of low-pass filter with exponential transmission lines using differential evolutionary algorithm. Akıllı Sistemler ve Uygulamaları Dergisi (Journal of Intelligent Systems with Applications) 2018; 1(2): 93-97. DOI: 10.54856/jiswa.201812030

Full Text: PDF, in Turkish.

Total number of downloads: 677

Title: Design Optimization of Low-Pass Filter with Exponential Transmission Lines Using Differential Evolutionary Algorithm

Abstract: In this work, Differential Evolutionary Algorithm (DEA), a novel and commonly used optimization algorithm in engineering problems, is applied for the design optimization of a low pass filter with exponential transmission lines. Basically the principle of DEA is similar to genetic algorithms techniques, however compare to meta-heuristic algorithms it has a much simpler algorithm structure and higher stability compare to its counterpart algorithms. For design optimization of low pass filter with exponential transmission lines, each of the transmission lines width and variation with its length are taken as an optimization variable for DEA. Firstly the unit microstrip transmission line model is chosen. After that, the optimal value of widths and lengths are obtained via DEA. The cost function of the DEA is based on the calculation of scattering parameters of candidate's solutions crossed the requested frequency bandwidth.

Keywords: Optimization; differential evolutionary algorithm; exponential transmission lines; low-pass filter


Başlık: Diferansiyel Evrim Algoritması Kullanılarak Eksponansiyel Hatlar ile Alçak Geçiren Filtre Tasarımı

Özet: Son yıllarda diferansiyel evrim algoritması (DEA) yöntemi mühendislik problemlerinin çözümünde etkin olarak kullanlmaya başlanmıştır. Bu çalışmada DEA yöntemi mikroşerit hatlar kullanılarak alçak geçiren filtre tasarımına uygulanmıştır. DEA ile optimum bir mikroşerit alçak geçiren filtre tasarımı için, eksponansiyel mikroşerit iletim hatları birim hat parçalarına bölünerek genişlik ve uzunluğa göre empedans değişimi incelenmiştir. Mikroşerit hattın genişliği değiştirilerek veya değişik geometrilerde başka metal şeritler kullanarak hemen hemen her türlü pasif mikrodalga devresi elde edilebilmektedir. DEA bu hatlara ait optimum genişlik ve uzunlukları ayarlanmıştır. Aday devrenin saçılma parametreleri incelenerek maliyet fonsiyonu incelenmiştir. Yapılan incelemeler sonucunda optimum sonuçları sağlayan parametreler elde edilecek şekilde belirlenmiştir. Son olarak, DEA kullanılarak eksponansiyel hatlar ile alçak geçiren filtre tasarımı yapılmıştır.

Anahtar kelimeler: Optimizasyon; diferansiyel evrim algoritması; eksponensiyel hatlar; alçak geçiren filtre


Bibliography:
  • Belen M, Kaya A. Microstrip band pass filter with adding lumped component for 2.4 GHz ISM band application. SDU Journal of Technical Sciences 2011; 1(1): 10-15.
  • Cameron RJ. General coupling matrix synthesis methods for chebyshev filtering functions. IEEE Transactions on Microwave Theory and Techniques 1999; 47(4): 433-442.
  • Keskinturk T. Differential evolution algorithm. Istanbul Commerce University Journal of Science 2006; 5(9): 85-99.
  • Michalewicz Z. Genetic Algorithms + Data Structure = Evolution Programs. Springer & Verlag, USA, 1992.
  • Storn R, Price K. Differential evolution: A simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, International Computer Science Institute, Berkeley, USA, 1995.
  • Karaboga D. Yapay Zeka Optimizasyonu Algoritmalari. Atlas Publisher, Istanbul, Turkey, 2004.
  • Bergey PK, Ragsdale C. Modified differential evolution: A greedy random strategy for genetic recombination. Omega 2005; 33(3): 255-265.
  • Belen MA, Alici M, Cor A, Gunes F. Performance characterization of a microwave transistor with fire fly algorithm. In Conference on Electrical and Electronics Engineering (ELECO), November 27–29, 2014, Bursa, Turkey, pp. 491-494.
  • Hrstka O, Kucerova A. Improvemenets of real coded genetic algorithms based on differential operators preventing premature convergence. Advances in Engineering Software 2004; 35: 237-246.
  • Collin RE. Foundation for Microwave Engineering. McGrawHill, 1992, pp. 334-339.
  • Storn R, Price K. Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 1997; 11: 341–359.
  • Yuan X, Wang L, Zhang Y, Yuan Y. A hybrid differential evolution method for dynamic economic dispatch with valve-point effects. Expert Systems with Applications 2009; 36(2): 4042-4048.
  • Yuan X, Wang L, Yuan Y, Zhang Y, Cao B, Yang B. A modified differential evolution approach for dynamic economic dispatch with valve-point effects. Energy Conversion and Management 2002; 49(12): 3447-3453.
  • Yasar C, Temurtas H, Ozyon S. Differential evolution algorithm applied to environmental economic power dispatch problems consisting of thermal units. In 6. Electrical and Electronics Engineering (ELECO), December 2-5, 2010, Bursa, Turkey.
  • Keskinturk T. Diferansiyel gelisim algoritmasi. In YA/EM 2006 - XXVI. Ulusal Kongresi, July 3-5, 2006, Kocaeli, Turkey, pp. 214-217.
  • Noman N, Iba H. Differential evolution for economic load dispatch problems. Electric Power Systems Research 2008; 78(8): 1322-1331.
  • Qiu X, Xu J, Tan KC, Abbass HA. Adaptive cross-generation differential evolution operators for multiobjective optimization. IEEE Transactions on Evolutionary Computation 2016; 20(2): 232-244.
  • Hongwen Y, Xinran L. A novel attribute reduction algorithm based improved differential evolution. In Second WRI Global Congress on Intelligent Systems (GCIS). December 16-17, 2010, Wuhan, China, vol. 3, pp. 87-90.
  • Liouane H, Chiha I, Douik A, Messaoud H. Probabilistic differential evolution for optimal design of LQR weighting
  • matrices. In IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA), Julay 2-4, 2012, Tianjin, China, pp. 18–23.
  • Zorarpaci E, Ozel SA. Hybrid method using differential evolution algorithm and artificial bee colony optimization technique for feature selection problem. DEU Journal of Science and Engineering 2004; 16(48): pp. 49-60.
  • Rocca P, Oliveri G, Massa A. Differential evolution as applied to electromagnetics. IEEE Antennas and Propagation Magazine 2011; 53(1): 38-49.
  • Yildirim A, Ranjbar Moule M, Yildirim T. Cok genis bantli mikroserit bandgeciren filtre tasarimina yonelik diferansiyel evrim algoritmasi uygulamasi. Akilli Sistemlerde Yenilikler ve Uygulamalari (ASYU) Symposium, September 29-October 1, 2016, Duzce, Türkey.
  • Yildirim A, Mahouti P, Gunes F. Diferansiyel evrim algoritmasi kullanilarak mikrodalga transistor performans analizi. Akilli Sistemlerde Yenilikler ve Uygulamalari (ASYU) Symposium, September 29-October 1, 2016, Duzce, Türkey.
  • Yildirim A, Gunes F, Belen MA. Differential evolution optimization applied to the performance analysis of a microwave transistor. Sigma Journal of Engineering and Natural Sciences 2017; 8(2): 135-144.
  • Dobrowolski JA. Microwave Network Design Using the Scattering Matrix. Artech House, 1st edition, 2010.