Flag Counter
AKILLI SİSTEMLER VE UYGULAMALARI DERGİSİ
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Autonomous Mobile Robot Navigation in Structured Rough Terrain

Tasarlanmış Engebeli Ortamda Otonom Mobil Robot Gezinimi

How to cite: Yaşar A, Uslu E, Çakmak F, Altuntaş N, Amasyalı MF, Yavuz S. Autonomous mobile robot navigation in structured rough terrain. Akıllı Sistemler ve Uygulamaları Dergisi (Journal of Intelligent Systems with Applications) 2018; 1(1): 67-74. DOI: 10.54856/jiswa.201805023

Full Text: PDF, in Turkish.

Total number of downloads: 1579

Title: Autonomous Mobile Robot Navigation in Structured Rough Terrain

Abstract: Main study areas for robotics research can be given as: mapping, localization, navigation and exploration. Given a robot’s current position, partial map of the environment and a goal position; navigation problem can be defined as optimal path planning and path following. Path planning and path following problem should be handled according to environment being static or dynamic, robot's mobility capabilities, sensors used on the robot and the roughness of the environment. In the study a four wheeled, skid-steering robot with laser range finder and depth sensor is built for Gazebo simulation environment. Also a statically structured labyrinth that consists of 15 degree continuous ramps, 15 degree discontinuous ramps, amorphous holes that robot cannot autonomously escape from if fallen into, walls and discontinuous obstacles that are below the robot laser height. 2D simultaneous localization and mapping, 3D mapping, path planning and path following with respect to the 3D map are implemented on Robot Operating System (ROS). Optimal path planning in rough terrain is accomplished by combining A* heuristic with a function of height difference of the 3D map nodes. Path following is carried out by turning-to and moving-towards actions on each sequential path node pairs. Tests performed on the labyrinth shows that obstacle avoidance, path planning and path following can be carried out successfully with the given implementation.

Keywords: Autonomous mobile robot; navigation; rough terrain; 3D mapping; A*; ROS; Gazebo


Başlık: Tasarlanmış Engebeli Ortamda Otonom Mobil Robot Gezinimi

Özet: Robotik çalışmalarında temel problemler: haritalama, konum belirleme, gezinim ve keşif olarak verilebilir. Gezinim problemi, robot konumu, ortama ilişkin kısmi harita ve hedef nokta biliniyorken bu hedef noktaya en iyi yolun çizilmesi ve bu yolun takip edilmesi problemidir. Yol bulma ve yol takibi problemleri; ortamın statik veya dinamik olması, mobil robotun hareket kabiliyeti, mobil robot üzerinde kullanılan sensörlerin özellikleri ve ortamdaki engebelerin özellikleri açısından farklı kapsamlarda değerlendirilebilir. Çalışmada Gazebo simülasyon ortamında, oluşturulmuş 4 tekerli, kızaklı yönlendirme sürüşlü robot ile lazer mesafe sensörü ve derinlik sensörü kullanılmıştır. Yine Gazebo simülasyon ortamında tasarlanmış statik labirent; 15 derece sürekli rampalar, 15 derecelik süreksiz rampalar, robotun fiziki olarak aşamayacağı çukurlar, duvarlar ve robot lazer hizasının altında kalan süreksiz engeller içermektedir. Çalışma kapsamında 2B eşanlı konum belirleme ve haritalama, 3B haritalama, 3B haritaya göre yol bulma ve yol takibi Robot İşletim Sistemi (ROS) kullanılarak gerçeklenmiştir. A* algoritmasında sezgisel terime, elde edilen 3B haritada düğümler arası yükseklik farkının bir fonksiyonunun katılması ile engebeli ortamda hedefe en iyi yolun çizdirilmesi sağlanmıştır. Çizdirilen yolun takip edilmesinde ise yolu oluşturan her ardışık iki düğüm arasında önce robotun ara hedefe yönelmesi sonrasında ise ara hedefe ilerlemesi sağlanmıştır. Labirent ortamında yapılan testlerde geliştirilen yaklaşımın engel kaçınımı, yol bulma ve yol takibinde başarılı sonuçlar verdiği görülmüştür.

Anahtar kelimeler: Otonom mobil robot; gezinim; engebeli ortam; 3B haritalama; A*; ROS; Gazebo


Bibliography:
  • Kim YG, Kwak JH, Kim J, An J, Lee KD. Adaptive driving mode control of mobile platform with wheel-track hybrid type for rough terrain in the civil environment. In 2010 International Conference on Control Automation and Systems (ICCAS), 2010.
  • Zucker M, Bagnell J, Atkeson C, Kuffner J. An optimization approach to rough terrain locomotion. In 2010 IEEE International Conference on Robotics and Automation (ICRA), 2010.
  • Jaradat M, BaniSalim M, Awad F. Autonomous navigation robot for landmine detection applications. In 2012 8th International Symposium on Mechatronics and its Applications (ISMA), 2012.
  • Udengaard M, Iagnemma K. Kinematic analysis and control of an omnidirectional mobile robot in rough terrain. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2007), 2007.
  • Tarokh M. A genetic robot path planner with fuzzy logic adaptation. In 6th IEEE/ACIS International Conference onComputer and Information Science (ICIS 2007), 2007.
  • Ye C, Borenstein J. A method for mobile robot navigation on rough terrain. In Proceedings of 2004 IEEE International Conference on Robotics and Automation (ICRA'04), 2004.
  • Tahirovic A, Magnani G, Kuwata Y. An approximate of the costto-go map on rough terrains. In 2013 IEEE International Conference on Mechatronics (ICM), 2013.
  • Dornhege C, Kleiner A. Behavior maps for online planning of obstacle negotiation and climbing on rough terrain. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2007), 2007.
  • Sheh R, Hengst B, Sammut C. Behavioural cloning for driving robots over rough terrain. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011.
  • Niwa Y, Yukita S, Hanaizumi H. Depth map-based obstacle avoidance on rough terrain. In Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), 2004.
  • Elayaraja D, Ramabalan S. Fuzzy logic based motion control of mobile robot in a rough terrain. In 2012 International Conference on Advances in Engineering, Science and Management (ICAESM), 2012.
  • Tahirovic A, Magnani G. General framework for mobile robot navigation using passivity-based MPC. IEEE Transactions on Automatic Control 2011; 56(1): 184-190.
  • Howard A, Werger B, Seraji H. Integrating terrain maps into a reactive navigation strategy. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA'03), 2003.
  • Schwarz M, Behnke S. Local navigation in rough terrain using omnidirectional height. In Proceedings of 41st International Symposium on Robotics (ISR/Robotik 2014), 2014.
  • Brunner M, Bruggemann B, Schulz D. Motion planning for actively reconfigurable mobile robots in search and rescue scenarios. In 2012 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), 2012.
  • Guo Y, Parker L, Jung D, Dong Z. Performance-based rough terrain navigation for nonholonomic mobile robots. In 29th Annual Conference of the IEEE Industrial Electronics Society (IECON'03), 2003.
  • Ettlin A, Bleuler H. Randomised rough-terrain robot motion planning. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006.
  • Ettlin A, Bleuler H. Rough-terrain robot motion planning based on obstacleness. In 9th International Conference on Control, Automation, Robotics and Vision (ICARCV'06), 2006.
  • Ohki T, Nagatani K, Yoshida K. Safety path planning for mobile robot on rough terrain considering instability of attitude maneuver. In 2010 IEEE/SICE International Symposium on System Integration (SII), 2010.
  • Furgale P, Barfoot T. Stereo mapping and localization for long-range path following on rough terrain. In 2010 IEEE International Conference on Robotics and Automation (ICRA), 2010.
  • Reinstein M, Kubelka V, Zimmermann K. Terrain adaptive odometry for mobile skidsteer robots. In 2013 IEEE International Conference on Robotics and Automation (ICRA), 2013.
  • Zakerinejad N, Bakhtiary A, Motlagh M. Use of particle swarm optimization in path planning for rough terrain. In 2010 IEEE 19th International Workshop on Robotics in Alpe-AdriaDanube Region (RAAD), 2010.
  • Keskin N, Uslu E, Cakmak F, Altuntass N, Amasyali MF, Yavuz S. Autonomous mobile robot exploration in negative obstacle environment. In 25th Signal Processing and Communication Application Conference (SIU2017), Antalya, 2017.
  • O.S.R. Foundation. Sdf format. Retrieved from http://sdformat.org/ on January 4, 2017.
  • Labb M, Michaud F. Appearance-based loop closure detection for online large-scale and long-term operation. IEEE Transactions on Robotic 2013; 29(3): 734-745.
  • Whelan T, Kaess M, Johannsson H, Fallon MF, Leonard JJ, McDonald JB. Real-time large scale dense RGB-D SLAM with volumetric fusion. The International Journal of Robotics Research 2014; 34(4-5): 598-626.
  • Grisetti G, Stachniss C, Burgard W. Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Transactions on Robotics 2007; 23(1): 34-46.
  • Uslu E, Cakmak F, Altuntas N, Marangoz S, Amasyali MF, Yavuz S. An architecture for multi-robot localization and mapping in the Gazebo/Robot operating system simulation environment. Simulation 2017; 93(9): 771-780.
  • Hornung A, Wurm KM, Bennewitz M, Stachniss C, Burgard W. OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots 2013; 34(3): 189-206.