Flag Counter
AKILLI SİSTEMLER VE UYGULAMALARI DERGİSİ
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

A Fast Firefly Algorithm

Hızlı Ateş Böceği Algoritması

How to cite: Akay R, Basturk A. A fast firefly algorithm. Akıllı Sistemler ve Uygulamaları Dergisi (Journal of Intelligent Systems with Applications) 2018; 1(1): 53-56. DOI: 10.54856/jiswa.201805017

Full Text: PDF, in Turkish.

Total number of downloads: 562

Title: A Fast Firefly Algorithm

Abstract: In this study, the advantages of the parallel compution paradigms are utilized in a recent optimization algorithm, firefly algorithm. In the proposed implementation, the population is divided into subpopulations and each subpopulation is run on a different processing node. From the results on commonly used benchmark functions, the proposed model enhances the computation cost without comprosing on the solution quality.

Keywords: Global optimization, Firefly algorithm; parallel computing; MPI


Başlık: Hızlı Ateş Böceği Algoritması

Özet: Bu çalışmada, yeni bir optimizasyon algoritması olan ateş böceği algoritmasını hızlandırmak için paralel hesaplama sistemlerinin getirdiği avantajlardan faydalanılmıştır. Gerçekleştirilen modelde popülasyon alt popülasyonlara bölünmüş ve her bir alt popülasyonun farklı bir işlemcide çalışması sağlanmıştır. Yaygın olarak kullanılan bazı test fonksiyonları üzerinde elde edilen sonuçlardan, gerçekleştirilen modelin algoritmanın performansını etkilemeden hızını belirgin bir şekilde arttırdığı görülmüştür.

Anahtar kelimeler: Ateş böceği algoritması; paralel hesaplama; MPI


Bibliography:
  • Yang XS. Nature-Inspired Metaheuristic Algorithms. Luniver Press, UK, 2008.
  • Yang XS. Firefly algorithms for multimodal optimization. In 5th International Symposium on Stochastic Algorithms (SAGA 2009), Sapporo, Japan, Cotober 26-28, 2009.
  • Tilahun SL, Ngnotchouyei JMT. Firefly algorithm for discrete optimization problems: A survey. Journal of Civil Engineering 2017; 21(2): 535-545.
  • Rahmani A, MirHassani S. A hybrid firefly-genetic algorithm for the capacitated facility location problem. Information Sciences 2014; 283: 70-78.
  • Li M, Zhang Y, Zeng B, Zhou H, Liu J. The modified firefly algorithm considering fireflies' visual range and its application in assembly sequences planning. The International Journal of Advanced Manufacturing Technology 2016; 82(5): 1381-1403.
  • Huang SJ, Liu XZ, Su WF, Yang SH. Application of hybrid firefly algorithm for sheath loss reduction of underground transmission systems. IEEE Transactions on Power Delivery 2013; 28(4): 2085-2092.
  • Mohanty DK. Application of firefly algorithm for design optimization of a shell and tube heat exchanger from economic point of view. International Journal of Thermal Sciences 2016; 102: 228-238.
  • Erdal F. A firefly algorithm for optimum design of newgeneration beams. Engineering Optimization 2017; 49(6): 1-17.
  • Upadhyay P, Kar R, Mandal D, Ghoshal S. A new design method based on firefly algorithm for IIR system identification problem. Journal of King Saud University-Engineering Sciences 2016; 28(2): 174-198.
  • Setiadi H, Jones KO. Power system design using firefly algorithm for dynamic stability enhancement. Indonesian Journal of Electrical Engineering and Computer Science 2016; 1: 446-455.
  • Alba E. Parallel Metaheuristics: A New Class of Algorithms. Wiley Interscience, 2005.
  • Pacheco PS. Parallel Programming with MPI. Morgan Kaufmann Publishers, USA, 1996.
  • Grama A, Gupta A, Karypis G, Kumar V. Introduction to Parallel Computing. Addison Wesley, Edinburg, 2003.