Flag Counter
AKILLI SİSTEMLER VE UYGULAMALARI DERGİSİ
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Frequency Recognition from Temporal and Frequency Depth of the Brain-Computer Interface based on Steady-State Visual Evoked Potentials

Durağan-Durum Görsel Uyarılmış Potansiyellere Dayalı Beyin-Bilgisayar Arayüzünün Zamansal ve Frekanssal Derinliğinden Frekans Tanıma

How to cite: Sayılgan E, Yüce YK, İşler Y. Frequency recognition from temporal and frequency depth of the brain-computer interface based on steady-state visual evoked potentials. Akıllı Sistemler ve Uygulamaları Dergisi (Journal of Intelligent Systems with Applications) 2021; 4(1): 68-73. DOI: 10.54856/jiswa.202105160

Full Text: PDF, in English.

Total number of downloads: 766

Title: Frequency Recognition from Temporal and Frequency Depth of the Brain-Computer Interface based on Steady-State Visual Evoked Potentials

Abstract: Brain-computer interface (BCI) system based on steady-state visual evoked potentials (SSVEP) have been acceleratingly used in different application areas from entertainment to rehabilitation, like clinical neuroscience, cognitive, and use of engineering researches. Of various electroencephalography paradigms, SSVEP-based BCI systems enable apoplectic people to communicate with outside world easily, due to their simple system structure, short or no training time, high temporal resolution, high information transfer rate, and affordable by comparing to other methods. SSVEP-based BCIs use multiple visual stimuli flickering at different frequencies to generate distinct commands. In this paper, we compared the classifier performances of combinations of binary commands flickering at seven different frequencies to determine which frequency pair gives the highest performance using temporal and spectral methods. For SSVEP frequency recognition, in total 25 temporal change characteristics of the signals and 15 frequency-based feature vectors extracted from the SSVEP signal. These feature vectors were applied to the input of seven well-known machine learning algorithms (Decision Tree, Discriminant Analysis, Logistic Regression, Naive Bayes, Support Vector Machines, Nearest Neighbour, and Ensemble Learning). In conclusion, we achieved 100% accuracy in 7.5 - 10 frequency pairs among these 2,520 distinct runs and we found that the most successful classifier is the Ensemble Learning classifier. The combination of these methods leads to an appropriate detailed and comparative analysis that represents the robustness and effectiveness of classical approaches.

Keywords: Brain-computer interface; steady-state visual-evoked potential; EEG; machine learning


Başlık: Durağan-Durum Görsel Uyarılmış Potansiyellere Dayalı Beyin-Bilgisayar Arayüzünün Zamansal ve Frekanssal Derinliğinden Frekans Tanıma

Özet: Durağan-durum görsel-uyarılmış potansiyellere (DDGUP) dayalı beyin-bilgisayar arayüzü (BBA) sistemi, klinik nörobilim, bilişsel ve mühendislik araştırmalarının kullanımı gibi eğlenceden rehabilitasyona kadar farklı uygulama alanlarında hızla kullanılmaktadır. Çeşitli elektroensefalografi paradigmalarından DDGUP tabanlı BBA sistemleri, apoplektik kişilerin basit sistem yapıları, kısa veya hiç eğitim süreleri, yüksek zamansal çözünürlükleri, yüksek bilgi aktarım hızları ve diğer yöntemlere göre ekonomik olması nedeniyle dış dünya ile kolayca iletişim kurmasını sağlar. DDGUP tabanlı BBA'lar, farklı komutlar oluşturmak için farklı frekanslarda titreşen birden çok görsel uyarıcı kullanır. Bu yazıda, zamansal ve spektral yöntemleri kullanarak hangi frekans çiftinin en yüksek performansı verdiğini belirlemek için yedi farklı frekansta titreşen ikili komut kombinasyonlarının sınıflandırıcı performanslarını karşılaştırdık. DDGUP’tan frekans tanıma için, DDGUP sinyalinden toplam 25 zamansal değişim özniteliği ve 15 frekans tabanlı öznitelik vektörü çıkarıldı. Bu öznitelik vektörleri, iyi bilinen yedi makine öğrenme algoritmasının (Karar Ağacı, Ayırıcı Analiz, Lojistik Regresyon, Naive Bayes, Destek Vektör Makineleri, En Yakın Komşuluk ve Topluluk Öğrenmesi) girdisine uygulandı. Sonuç olarak, 2,520 farklı koşturma arasında 7.5 - 10 frekans çiftinde %100 doğruluk elde ettik ve en başarılı sınıflandırıcının Topluluk Öğrenmesi sınıflandırıcısı olduğunu gördük. Bu yöntemlerin kombinasyonu, klasik yaklaşımların sağlamlığını ve etkinliğini temsil eden uygun, ayrıntılı ve karşılaştırmalı bir analize götürmektedir.

Anahtar kelimeler: Beyin-bilgisayar arayüzü; durağan durum görsel uyarılmış potansiyel; EEG; makine öğrenmesi


Bibliography:
  • McFarland DJ, Wolpaw JR. Brain-computer interfaces for communication and control. Communication of ACM 2011; 54(5): 60-66.
  • Nicolas-Alonso LF, Gomez-Gil J. Brain computer interfaces, a review. Sensors 2012; 12(2): 1211-1279.
  • Ramadan RA, Vasilakos AV. Brain computer interface: Control signals review. Neurocomputing 2017; 223: 26-44.
  • Abiri R, Borhani S, Sellers EW, Jiang Y, Zhao X. A comprehensive review of EEG-based brain-computer interface paradigms. Journal of Neural Engineering 2019; 16(1): 011001.
  • Wang Y, Gao X, Hong B, Jia C, Gao S. Brain-computer interfaces based on visual evoked potentials. IEEE Engineering in Medicine and Biology Magazine 2008; 27(5): 64-71.
  • Gao S, Wang Y, Gao X, Hong B. Visual and auditory brain-computer interfaces. IEEE Transactions on Biomedical Engineering 2014; 61(5): 1436–1447.
  • Zhang Y, Xie SQ, Wang H, Zhang Z. Data analytics in steady-state visual evoked potential-based brain–computer interface: A review. IEEE Sensors Journal 2021; 21(2): 1124-1138.
  • Sayilgan E, Yuce YK, Isler Y. Determining gaze information from steady-state visually-evoked potentials. Karaelmas Science and Engineering Journal 2020; 10(2): 151-157.
  • Huang X, Xu J, Wang Z. A novel instantaneous phase detection approach and its application in SSVEP-based brain-computer interfaces. Sensors 2018; 18(12): 4334.
  • Ge S, Jiang Y, Wang P, Wanga HX, Zheng WM. Training-free steady-state visual evoked potential brain–computer interface based on filter bank canonical correlation analysis and spatiotemporal beamforming decoding. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2019; 27(9): 1714–1723.
  • Chen YF, Atal K, Xie AQ, Liu Q. A new multivariate empirical mode decomposition method for improving the performance of SSVEP-based brain-computer interface. Journal of Neural Engineering 2017; 14(4): 046028.
  • Cao Z, Lin CT, Lai KL, Ko LW, King JT, Liao KK, Fuh JL, Wang SJ. Extraction of SSVEPs-based inherent fuzzy entropy using a wearable headband EEG in migraine patients. IEEE Transactions on Fuzzy Systems 2020; 28(1): 14-27.
  • Ziafati A, Maleki A. Fuzzy ensemble system for SSVEP stimulation frequency detection using the MLR and MsetCCA. Journal of Neuroscience Methods 2020; 338: 108686.
  • Sayilgan E, Yuce YK, Isler Y. Evaluation of wavelet features selected via statistical evidence from steady-state visually-evoked potentials to predict the stimulating frequency. Journal of the Faculty of Engineering and Architecture of Gazi University 2021; 36(2): 593-606.
  • Sayilgan E, Yuce YK, Isler Y. Evaluation of mother wavelets on steady-state visually-evoked potentials for triple-command brain-computer interfaces. Turkish Journal of Electrical Engineering & Computer Sciences 2021; 29(5): 2263-2279.
  • Sayilgan E, Yuce YK, Isler Y. Investigating the effect of flickering frequency in steady-state visually-evoked potentials on dichotomic brain-computer interfaces. Innovation and Research in BioMedical Engineering 2021; Under Review.
  • Volosyak I. SSVEP-based Bremen–BCI interface boosting information transfer rates. Journal of Neural Engineering 2011; 8(3): 036020.
  • Parini S, Maggi L,Turconi AC, Andreoni G. A Robust and self-paced BCI system based on a four class SSVEP paradigm: Algorithms and protocols for a high-transfer-rate direct brain communication. Computational Intelligence and Neuroscience 2009; 864564: 1-11.
  • Vilic A. AVI steady-state visual evoked potential (SSVEP) signals dataset 2013. Last access 2018, August 15, https://www.setzner.com/avi-ssvep-dataset/
  • Sayilgan E, Yuce YK, Isler Y. Prediction of evoking frequency from steady-state visual evoked frequency. Natural and Engineering Sciences 2019; 4(3): 91-99.
  • Durmus E, Sadreddini Z, Gursel Ozmen N. Beyin-bilgisayar arayüzü sistemleri için uygun öznitelik ve sınıflandırıcı seçimi. Otomatik Kontrol Ulusal Toplantısı (TOK), Kocaeli/Türkiye, 2014, 651-656.
  • Gursel Ozmen N, Durmus E, Sadreddini Z. Can music classification be an alternative for brain computer interface applications? Uludag University Journal of The Faculty of Engineering 2017; 22(2): 11-22.
  • Sutter EE. The brain response interface-communication through visually induced electrical brain responses. Journal of Microcomputer Applications 1992; 15(1): 31-45.
  • Sayilgan E, Yuce YK, Isler Y. Estimation of three distinct commands using Fourier transform of steady-state visual-evoked potentials. Duzce University Journal of Science and Technology 2020; 8(4): 2337-2343.
  • Sayilgan E, Yuce YK, Isler Y. Determining seven different brain-computer interface commands using fourier transform and machine learning methods from SSVEP. In 2nd International Conference of Applied Sciences, Engineering and Mathematics (IBU-ICASEM 2020), 2020, June 4-6, Skopje/North, Macedonia.
  • Oikonomou VP, Liaros G, Georgiadis K, Chatzilari E, Adam K, Nikolopoulos S, Kompatsiaris I. Comparative evaluation of state-of-the-art algorithms for SSVEP-based BCIs. ArXiv Preprint 2016; 1-33.
  • Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, Yger F. A review of classification algorithms for EEG-based brain–computer interfaces: A 10 year update. Journal of Neural Engineering 2018; 15(3): 031005.
  • Alpaydin E. Introduction to Machine Learning, MIT Press, 2004.
  • Duda RO, Hart PE, Stork DG. Pattern Classification, 2nd edition, John Wiley & Sons, 2001.
  • Narin A, Isler Y, Ozer M. Comparison of the effects of cross validation methods on determining performances of classifiers used in diagnosing congestive heart failure. Dokuz Eylul University Engineering Faculty, Fen ve Muhendislik Bilimleri Dergisi 2014; 16(48): 1-8.
  • Jiao Y, Du P. Performance Measures in evaluating machine learning based bioinformatics predictors for classifications. Quantitative Biology 2016; 4(4): 320–330.
  • Sayilgan E, Karabiber O, Isler Y. Use of clustering algorithms and extreme learning machine in determining arrhythmia types. In 25th IEEE Signal Processing and Communications Applications Conference (SIU), 15-18 May, Antalya/Turkey, 2017.