Flag Counter
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893

Spirulina Platensis and Bioremediation of Phosmet, Ethion, Methyl Parathion pesticides

Spirulina Platensis ve Phosmet, Ethion, Methyl Parathion pestisitlerinin Bioremediasyonu

How to cite: Gül , Bankoğlu Yola B, Kıran TR, Yola ML. Spirulina platensis and bioremediation of phosmet, ethion, methyl parathion pesticides. J Intell Syst Appl 2021; 4(1): 50-57.

Full Text: PDF, in English.

Total number of downloads: 185

Title: Spirulina Platensis and Bioremediation of Phosmet, Ethion, Methyl Parathion pesticides

Abstract: In this study, the bioremediation efficiency of some pesticides in Toxic Industrial Chemical category of CBRN (Chemical, Biological, Radioactive, Nuclear) threats with blue-green microalgae was investigated. Although these pesticides are highly harmful to human, living and environmental health, they are highly persistent in nature. Recently, the increasing demand and use of pesticides in the agricultural field poses risks in production, transportation and storage areas. The microalgae we have used are already known for its ability to metabolize pesticides, as well as its use in important areas, especially in the medicine and pharmaceutical industry. Using environmentally friendly bioremediation technique to eliminate or minimize the harmful effects of pesticides contributes to nature and the future. The fact that the selected microalgae and pesticides have not been investigated before proves the originality of our study. Pesticide remediation amount measurements were made by electrochemistry method and it was determined that Spirulina platensis removed Phosmet, Ethion and Methyl Paration by 70.0%, 61.0%, 50.0%, respectively, at the end of the 7th day.

Keywords: CBRN (chemical, biological, radioactive, nuclear); pesticide; bioremediation; microalgae


Başlık: Spirulina Platensis ve Phosmet, Ethion, Methyl Parathion pestisitlerinin Bioremediasyonu

Özet: Bu çalışmada, CBRN (Kimyasal, Biyolojik, Radyoaktif, Nükleer) tehditlerinin Toksik Endüstriyel Kimyasal kategorisindeki bazı pestisitlerin mavi-yeşil mikro alglerle biyoremediasyon etkinliği araştırılmıştır. Söz konusu pestisitler insan, canlı ve çevre sağlığına oldukça zararlı olmakla beraber doğada kalıcılığı yüksektir. Son zamanlarda tarımsal alanda pestisitlere olan talebin ve kullanımın artması üretim, taşıma ve depolama alanlarında risk oluşturmaktadır. Kullanmış olduğumuz mikro algin hali hazırda başta tıp ve ilaç sanayisi olmak üzere önemli alanlarda kullanımının yanı sıra pestisitleri metabolize etme yeteneği de bilinmektedir. Pestisitlerin zararlı etkilerini yok etmek ya da en aza indirgemek için çevre dostu olan biyoremediasyon tekniğinin kullanılması, doğaya ve geleceğe katkı sağlamaktadır. Seçilen mikro alg ve pestisitlerin daha önce araştırılmamış olması çalışmamızın özgünlüğünü kanıtlamaktadır. Pestisit remediasyon miktar ölçümleri elektrokimya yöntemi ile yapılmış ve Spirulina platensis'in 7. gün sonunda Phosmet, Ethion veMetil Paration'u sırasıyla %70.0, %61.0, %50.0 oranında ortamdan uzaklaştırdığı tespit edilmiştir.

Anahtar kelimeler: KBRN (kimyasal, biyolojik, radyoaktif, nükleer); pestisit; biyoremediasyon; mikroalg


Bibliography:
  • Maczulak AE. Pollution: Treating Environmental Toxins. Infobase Publishing, New York, 2010, p. 120.
  • Ward O, Singh A. Applied bioremediation and phytoremediation. Soil Bioremediation and Phytoremediation (editors Singh A, Ward OP), Springer-Verlag Berlin Heidelberg, 1 st edition, 2004, p. 11.
  • Uqab B, Mudasir S, Qayoom A, Nazir R. Bioremediation: A management tool. Journal of Bioremediation & Biodegradation 2016; 7(2): 331.
  • Gul UD, Yavuz SA. Bioremediation of pesticide contaminated environment. Turkish Journal of Scientific Reviews 2018; 11(1): 7-17.
  • Boudh S, Singh JS. Pesticide contamination: Environmental problems and remediation strategies. In Emerging and Eco-Friendly Approaches for Waste Management (editors Bharagava R, Chowdhary P), Springer, Singapore, 2019, pp. 245-269.
  • Varjani SJ, Agarwal AK, Gnansounou E, Gurunathan B. Introduction to environmental protection and management. In Bioremediation: Applications for Environmental Protection and Management (editors Varjani SJ, Agarwal AK, Gnansounou E, Gurunathan B), Springer Nature Singapore Pte Ltd. Gateway East, Singapore, 2018, pp. 1-7.
  • Jayaraj R, Megha P, Sreedev P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdisciplinary Toxicology 2016; 9(3-4): 90-100.
  • Smith A, Jong HM. Distribution of organochlorine pesticides in soils from South Korea. Chemosphere 2001; 43(2): 137-140.
  • Wasseling C, Aragon A, Castillo L, Corriols M, Chaverri F, De la Cruz E, Keifer M, Monge P, Partanen TJ, Ruepert C, Van Wendel de Joode B. Hazardous pesticides in Central America. International Journal of Occupational and Environmental Health 2001; 7(4): 287-294.
  • McLellan J, Gupta SK, Kumar M. Feasibility of using bacterial-microalgal consortium for the bioremediation of organic pesticides: Application constraints and future prospects. In Application of Microalgae in Wastewater Treatment (editors Gupta SK, Bux F), Springer, Cham. 341349, 2019.
  • Bharagava RN, Saxena G, Mulla SI. Bioremediation of industrial waste for environmental safety volume I: Industrial waste and its management. In Introduction to Industrial Wastes Containing Organic and Inorganic Pollutants and Bioremediation Approaches for Environmental Management (editors Saxena G, Bharagava RN), Springer Nature Singapore Pte Ltd, 2020, pp. 1-19.
  • Senthil Kumar P, Femina Carolin C, Varjani SJ. Pesticides bioremediation. In Bioremediation: Applications for Environmental Protection and Management (editors Varjani SJ, Agarwal AK, Gnansounou E, Gurunathan B), Springer Singapore, 2018, pp. 197-222.
  • Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS. Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnology Advances 2016; 34(1): 14-29.
  • Singh S, Kate BN, Banerjee UC. Bioactive compounds from cyanobacteria and microalgae: An overview. Critical Reviews in Biotechnology 2005; 25(3): 73-95.
  • Sisman AG, Oral R. Investigation of the hormesis/toxicity potential of Manisa (Turkey) urban waste water treatment plant by using Selenastrum capricornutum Printz. Fresenius Environmental Bulletin 2014; 23(5): 1183-1189.
  • Zhou T, Wang J, Zheng H, Wu X, Wang Y, Liu M, Liu Y. Characterization of additional zinc ions on the growth, biochemical composition and photosynthetic performance from Spirulina platensis. Bioresource Technology 2018; 269: 285-291.
  • FAO. FAO Specifications and Evaluations for Agricultural Pesticide Phosmet, 2019. http://www.fao.org/3/CA2760EN/ca2760en.pdf
  • Edwards F, Tchounwou P. Environmental toxicology and health effects associated with methyl parathion exposure - A scientific review. International Journal of Environmental Research and Public Health 2005; 2(3): 430-441.
  • Foster RLJ, Kwan B H, Vancov T. Microbial degradation of the organophosphate pesticide, Ethion. FEMS Microbiology Letters 2004; 240(1): 49-53.
  • Kurade KB, Kim JR, Govindwar SP, Jeon BH. Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris: Microalgal tolerance to xenobiotic pollutants and metabolism. Algal Research 2016; 20: 126-134.
  • Fioravante IA, Barbosa FAR, Augusti R, Magalhaes SMS. Removal of methyl parathion by cyanobacteria Microcystis novacekii under culture conditions. Journal of Environmental Monitoring 2010; 12(6): 1302-1306.
  • Abdel-Razek MA, Abozeid AM, Eltholth MM, Abouelenien FA, El-Midany SA, Moustafa NY, Mohamed RA. Bioremediation of a pesticide and selected heavy metals in wastewater from various sources usıng a consortium of microalgae and cyanobacteria. Slovenian Veterinary Research 2019; 56(22): 61-73.
  • Ibrahim WM, Karam MA, El-Shahat RM, Adwa AA. Biodegradation and utilization of organophosphorus pesticide malathion by cyanobacteria. BioMed Research International 2014; 392682.
  • Caceres T, Megharaj M, Naidu R. Toxicity and transformation of fenamiphos and its metabolites by two micro algae Pseudokirchneriella subcapitata and Chlorococcum sp. Science of the Total Environment 2008; 398(1): 53-59.
  • Gonzalez R, Garcia-Balboa C, Rouco M, Lopez-Rodas V, Costas E. Adaptation of microalgae to lindane: A new approach for bioremediation. Aquatic Toxicology 2012; 109: 25-32.
  • Hussein MH, Abdullah AM, El Din NIB, Mishaqa ESI. Biosorption potential of the microchlorophyte Chlorella vulgaris for some pesticides. Journal of Fertilizers & Pesticides 2017; 8(1): 1-5.
  • Jin ZP, Luo K, Zhang S, Zheng Q, Yang H. Bioaccumulation and catabolism of prometryne in green algae. Chemosphere 2012; 87(3): 278-284.
  • Zhang S, Qiu CB, Zhou Y, Jin ZP, Yang H. Bioaccumulation and degradation of pesticide fluroxypyr are associated with toxic tolerance in green alga Chlamydomonas reinhardtii. Ecotoxicology 2011; 20(2): 337-347.