Flag Counter
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893

Sliding Mode Control of Catheter Drive System and Performance Improvement via Fuzzy Logic

Kateter Tahrik Sisteminin Kayma Kipli Kontrolü ve Bulanık Mantık ile Performans İyileştirmesi

How to cite: Türkmen GA, Çetin L, Gürses BO, Şener M, Akbülbül , Baltacı A. Sliding mode control of catheter drive system and performance improvement via fuzzy logic. J Intell Syst Appl 2021; 4(1): 42-49.

Full Text: PDF, in English.

Total number of downloads: 186

Title: Sliding Mode Control of Catheter Drive System and Performance Improvement via Fuzzy Logic

Abstract: Catheters are used in medical applications such as bronchoscopy, colonoscopy, angiography. Due to the catheters are in direct contact with the tissue in these procedures, their movements must be controlled. In this study, three different sliding-mode controllers that can be used to control the movement of the catheter have been proposed. These are the classical sliding mode controller, quasi sliding mode controller, and asymptotic sliding mode controller structures. Performance comparison of the controllers was made by assessing the closed-loop system response. The results indicated that the performance of the quasi sliding mode controller was better than the other controllers. It has been proposed to use a fuzzy logic-based highest controller to improve the performance of the quasi sliding mode controller. The proposed controller structure updates the controller parameters depending on the predicted disturbance magnitude and position error. The results show that the real-time performance of the quasi sliding mode controller is improved by the change of the proposed control structure.

Keywords: Minimally invasive surgery; catheter; frictional driving; sliding mode control; fuzzy logic


Başlık: Kateter Tahrik Sisteminin Kayma Kipli Kontrolü ve Bulanık Mantık ile Performans İyileştirmesi

Özet: Kateterler bronkoskopi, kolonoskopi, anjiyografi gibi medikal uygulamalarda kullanılmaktadır. Kateterler bu işlemlerde direk olarak doku ile temas ettiklerinden dolayı hareketlerinin kontrollü olması gerekmektedir. Bu çalışmada kateterin ilerlemesinin kontrol etmek için kullanılabilecek üç farklı kayan kipli kontrolcü önerilmiştir. Bunlar klasik kayan kipli kontrolcü, yarı kayan kipli kontrolcü ve asimtotik kayan kipli kontrolcü yapılarıdır. Kontrolcülerin performans karşılaştırılması kapalı çevirim sistem cevabı incelenerek yapılmıştır. Sonuçlar yarı kayma kipli kontrolcünün performansının diğer kontrolcülerden daha iyi olduğunu göstermiştir. Yarı kayma kipli kontrolcünün performansının iyileştirilmesi için bulanık mantık tabanlı bir üst seviye kontrolcüsü kullanılması önerilmiştir. Önerilen kontrolcü yapısı tahmin edilen bozucu girdi genliği ve pozisyon hatasına baglı olarak kontrolcü parametrelerini güncellemektedir. Elde edilen sonuçlar yarı kayma kipli kontrolcünün gerçek zamanlı performansının önerilen kontrol yapısı değişikliği ile iyileştiğini göstermektedir.

Anahtar kelimeler: Minimal invaziv cerrahi; kateter; sürtünmeli sürüş; kayma kipli kontrol; bulanık mantık


Bibliography:
  • Bao X, Guo S, Xiao N, Wang Y, Qin M, Zhao Y, Xu C, Peng W. Design and evaluation of a novel guidewire navigation robot. In 2016 IEEE International Conference on Mechatronics and Automation, 2016, pp. 431-436.
  • Feng W, Chi C, Wang H, Wang K, Ye X, Guo S. Highly precise catheter driving mechanism for intravascular neurosurgery. In 2006 International Conference on Mechatronics and Automation, 2006, pp. 990-995.
  • Su YX, Zheng CH, Duan BY. Automatic disturbances rejection controller for precise motion control of permanent-magnet synchronous motors. IEEE Transactions on Industrial Electronics 2005; 52(3): 814-823.
  • Kumar V, Waldron KJ. Force distribution in walking vehicles. Journal of Mechanical Design 1990; 112(1): 90-99.
  • Yoshimura T, Ohya T, Kawahara T, Etoh M. Rate and robustness control with RTP monitoring agent for mobile multimedia streaming. In 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333) 2002; 4: 2513-2517.
  • Rodriguez DJ, Martinez JJ, Berenguer C. Deterioration estimation for remaining useful lifetime prognosis in a friction drive system. IFAC-PapersOnLine 2017; 50(1): 12785-12790.
  • Moix T, Ilic D, Fracheboud B, Bleuler H. Design of a friction drive actuator with integrated force and torque sensors. In 2005 IEEE Instrumentationand Measurement Technology Conference Proceedings, 2005, pp. 1762-1766.
  • Obando DR, Martinez JJ, Berenguer C. Deterioration estimation for predicting and controlling RUL of a friction drive system. ISA Transactions 2021; 113(7): 97-110.
  • Leine RI, Van Campen DH, De Kraker A, Van Den Steen L. Stick-slip vibrations induced by alternate friction models. Nonlinear Dynamics 1998; 16(1): 41-54.
  • Penning RS, Jung J, Borgstadt JA, Ferrier NJ, Zinn MR. Towards closed loop control of a continuum robotic manipulator for medical applications. In 2011 IEEE International Conference on Robotics and Automation, 2011, pp. 4822-4827.
  • Spaelter U, Samur E, Bleuler H. A 2-DOF friction drive for haptic surgery simulation of hysteroscopy. IFAC Proceedings Volumes 2006; 39(15): 334-339.
  • Lopez-Vidriero MT, Charman J, Keal E, De Silva DJ, Reid L. Sputum viscosity: Correlation with chemical and clinical features in chronic bronchitis. Thorax 1973; 28(4): 401-408.
  • Young KD, Utkin VI. Sliding mode in systems with parallel unmodeled high frequency oscillations. IFAC Proceedings Volumes 1995; 28(14): 483-487.
  • Singh K, Nema S, Padhy PK. Modified PSO based PID sliding mode control for inverted pendulum. In 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 2014, pp. 722-727.
  • Li S, Wang Y, Tan J, Zheng Y. Adaptive RBFNNs/integral sliding mode control for a quadrotor aircraft. Neurocomputing 2016; 216: 126-134.
  • Ma X, Sun F, Li H, He B. Neural-network-based sliding-mode control for multiple rigid-body attitude tracking with inertial information completely unknown. Information Sciences 2017; 400-401: 91-104.
  • Young KD, Utkin VI, Ozguner U. A control engineer's guide to sliding mode control. IEEE Transactions on Control Systems Technology 1999; 7(3): 328-342.
  • Garrido R, Diaz A. Cascade closed-loop control of solar trackers applied to HCPV systems. Renewable Energy 2016; 97: 689-696.
  • Shyu KK, Lai CK, Tsai YW, Yang DI. A newly robust controller design for the position control of permanent-magnet synchronous motor. IEEE Transactions on Industrial Electronics 2002; 49(3): 558-565.
  • Coleman CP, Godbole D. A comparison of robustness: fuzzy logic, PID, and sliding mode control. In Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference, 1994, pp. 1654-1659.
  • Delavari H, Ghaderi R, Ranjbar A, Momani S. Fuzzy fractional order sliding mode controller for nonlinear systems. Communications in Nonlinear Science and Numerical Simulation 2010; 15(4): 963-978.
  • Tao CW, Chan M, Lee T. Adaptive fuzzy sliding mode controller for linear systems with mismatched time-varying uncertainties. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 2003; 33(2): 283-294.
  • Eker I, Akinal SA. Sliding mode control with integral augmented sliding surface: Design and experimental application to an electromechanical system. Electrical Engineering 2008; 90(3): 189–197.
  • Utkin VI. Sliding Modes in Control and Optimization. Springer, 1992.
  • Furat M, Eker I. Experimental evaluation of sliding-mode control techniques. Cukurova University Journal of the Faculty of Engineering and Architecture 2012; 27(1): 23-37.
  • Young KD, Drakunov SV. Sliding mode control with chattering reduction. In 1992 American Control Conference, 1992, pp. 1291-1292.
  • Kwatny HG, Siu TL. Chattering in variable structure feedback systems. IFAC Proceedings Volumes 1987; 20(5): 307-314.
  • Shtessel YB, Shkolnikov IA, Brown MDJ. Asymptotic second-order smooth sliding mode control. Asian Journal of Control 2003; 5(4): 498-504.
  • Slotine JJE, Li W. Applied Nonlinear Control, Prentice Hall, 1991.
  • Shtessel Y, Edwards C, Fridman L, Levant A. Sliding Mode Control and Observation, Springer, 2014.
  • Cagal K, Salamci MU, Cevik F. Proportional-integral sliding mode controller design for a fin actuation mechanism. In 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 2020, pp. 1-6.
  • Bartoszewicz A. Discrete-time quasi-sliding-mode. IEEE Transactions on Industrial Electronics 1998; 45(4): 633-637.
  • Gao W, Wang Y, Homaifa A. Discrete-time variable structure control systems. IEEE Transactions on Industrial Electronics 1995; 42(2): 117-122.
  • Quigley M, Gerkey B, Conley K, Faust J, Foote T, Leibs J, Berger E, Wheeler R, Ng A. ROS: An open source robot operating system. In ICRA Workshop on Open Source Software, 2015.