Flag Counter
AKILLI SİSTEMLER VE UYGULAMALARI DERGİSİ
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Electromagnetic Weaponed Anti Terrorism Robot

Electromanyetik Silahlı Terörle Mücadele Robotu

How to cite: Demir M. Electromagnetic weaponed anti terrorism robot. Akıllı Sistemler ve Uygulamaları Dergisi (Journal of Intelligent Systems with Applications) 2021; 4(1): 24-30. DOI: 10.54856/jiswa.202105146

Full Text: PDF, in English.

Total number of downloads: 448

Title: Electromagnetic Weaponed Anti Terrorism Robot

Abstract: This article proposes the integration of electromagnetic weapons on a robot, design and construction of an electromagnetic armed robot, autonomous targeting of possible targets with the electromagnetic weapon, and the features a electromagnetic armed safety robot should have. Unlike traditional user-targeted field security robot approaches, the robot mentioned in this study detects potential threats in the task area with image processing and artificial intelligence techniques, so the user can accurately identify and autonomously target targets without the need for controlled targeting. Unlike today’s armed robots, an electromagnetic armed robot, which will be a new literature study, has been developed to create a reference path. An electromagnetic weapon that can be carried by a robot is produced and integrated into the robot and a new armed robot approach with electromagnetic weapon is introduced. Various methods are proposed considering the range restriction of electromagnetic weapons and possible targeting errors of the robot user. A control algorithm has been developed to have the most appropriate targeting under the dynamic constraints of the robot and user for target tracking. Prototyping and experiments show the ability of an autonomous security robot with an autonomous targeting system to troubleshoot user problems and targeting problems. In addition, various methods and recommendations are provided for the features that a electromagnetic armed security robot working in the field should have.

Keywords: Unmanned vehicle; electromagnetic weapon; object targeting; military robot; defense systems


Başlık: Electromanyetik Silahlı Terörle Mücadele Robotu

Özet: Bu makale, elektromanyetik silahların bir robota entegrasyonunu, elektromanyetik silahlı bir robotun tasarımını ve yapımını, elektromanyetik silahla olası hedeflerin otonom olarak hedeflenmesini ve bir elektromanyetik silahlı güvenlik robotunun sahip olması gereken özellikleri önermektedir. Bu çalışmada adı geçen robot, geleneksel kullanıcı hedefli saha güvenlik robotu yaklaşımlarından farklı olarak, görev alanındaki potansiyel tehditleri görüntü işleme ve yapay zeka teknikleriyle tespit ederek, kullanıcı kontrollü hedeflemeye ihtiyaç duymadan hedefleri doğru bir şekilde belirleyip otonom olarak hedef almasını sağlamaktadır. Günümüz silahlı robotlarından farklı olarak, yeni bir literatür çalışması olacak elektromanyetik silahlı bir robot, bir referans yol oluşturmak için geliştirilmiştir. Robot tarafından taşınabilen elektromanyetik bir silah üretilip robota entegre edilerek elektromanyetik silahlı yeni bir silahlı robot yaklaşımı tanıtılmıştır. Elektromanyetik silahların menzil sınırlaması ve robot kullanıcısının olası hedefleme hataları dikkate alınarak çeşitli yöntemler önerilmektedir. Hedef takibi için robot ve kullanıcının dinamik kısıtlamaları altında en uygun hedeflemeye sahip olacak şekilde bir kontrol algoritması geliştirilmiştir. Prototipleme ve deneyler, otonom bir hedefleme sistemine sahip otonom bir güvenlik robotunun kullanıcı sorunlarını ve hedefleme sorunlarını giderme yeteneğini göstermektedir. Ayrıca sahada çalışan elektromanyetik silahlı bir güvenlik robotunun sahip olması gereken özellikler için çeşitli yöntemler ve öneriler sunulmaktadır.

Anahtar kelimeler: İnsansız kara aracı; elekromanyetik silah; nesne hedefleme; askeri robot; savunma sistemleri


Bibliography:
  • Cai G, Dias J, Seneviratne L. A survey of small-scale unmanned aerial vehicles: Recent advances and future development trends. Unmanned Systems 2004; 2: 175-199.
  • Sapaty P. Unmanned and autonomous ground vehicle. International Journal of Electrical and Computer Engineering 2019; 9(5): 4466-4472.
  • Loong CKYL, Koonjul Y, Nagowah L. A low cost autonomous unmanned ground vehicle. Future Computing and Informatics Journal 2018; 3(2): 304–320.
  • Kurkin A, Pelinovsky E, Tyugin D, Kurkina O, Belyakov V, Makarov V, Zeziulin D. Coastal remote sensing using unmanned ground vehicles. International Journal of Environmental Science 2016; 1: 183–189.
  • Wasson SR, Guilberto J, Ogg K, Wedeward K, Bruder S, El-Osery AI. An unmanned ground vehicle for landmine remediation. Proceedings of SPIE - The International Society for Optical Engineering 2004; 5415: 1231-1239.
  • Gupta V, Kumbhare A, Jain R. Advanced antiterrorism unmanned ground vehicle. In IEEE International Students’ Conference on Electrical, Electronics and Computer Science, 2018.
  • Jasthi S, Ponnammal P, Cherukuri A, Neti AS. Unmanned ground vehicle for military purpose. International Journal of Pure and Applied Mathematics 2018; 119(12): 13189-13192.
  • Bouhraoua A, Merah N, Aldajani MA, Elshafei MA. Design and implementation of an unmanned ground vehicle for security applications. In Proceeding of the 7th International Symposium on Mechatronics and its Applications, 2010.
  • Louis KAB, Tarun KMSR, Teja T, Kiran BS. Intelligence spy robot with wireless night vision camera using android application. International Journal for Modern Trends in Science and Technology 2017; 3(SI-2): 1-5.
  • Sapaty P, Mehmood N, Jamil M, Ayaz Y. Military robotics: Latest trends and spatial grasp solutions. International Journal of Advanced Research in Artificial Intelligence 2015; 4(4): 1-10.
  • Murtaza Z, Mehmood N, Jamil M, Ayaz Y. Design and implementation of low cost remote-operated unmanned ground vehicle. In International Conference on Robotics and Emerging Allied Technologies in Engineering, 2014.
  • Bernardes J, Stumborg M, Jean T. Analysis of a capacitor-based pulsed-power system for driving long-range electromagnetic guns. IEEE Transactions on Magnetics 2003; 39(1): 486-490.
  • Bencheikh Y, Ouazir Y, Ibtiouen R. Analysis of capacitively driven electromagnetic coil guns. In The XIX International Conference on Electrical Machines - ICEM 2010, 2010.
  • Driga M, Weldon W, Woodson H. Electromagnetic induction launchers. IEEE Transactions on Magnetics 1986; 22(6): 1453-1458.
  • Tzeng J. Structural mechanics for electromagnetic rail guns. In 12th Symposium on Electromagnetic Launch Technology, 2004.
  • Grosjean C. General survey of some technical problems about military tracked vehicles. Journal of Terramechanics 1984; 21(4): 335-346.
  • Zhang T, Guo W, Fan W, Zhang H, Liu Y, Su Z. An efficiency-improved method of multi-stage induction coilgun based on magnetic field arrangement. Defence Technology 2018; withdrawn article in press.
  • Klimas M, Grabowski D, Piaskowy A. Efficiency analysis of an electromagnetic launcher. Prace Naukowe Politechniki Slaskiej Elektryka 2016; 2: 33-48.
  • Schmidt A, Kasinski A. The performance of the haar cascade classifiers applied to the face and eyes detection. Book Chapter In Computer Recognition Systems 2, Springer, 2007.
  • Ashwini B, Yuvaraju B, Pai A, Baliga B. Real time detection and classification of vehicles and pedestrians using haar cascade classifier with background subtraction. In 2nd International Conference on Computational Systems and Information Technology for Sustainable Solution, 2017.
  • Choudhury S, Chattopadhyay S, Hazra T, Zikidis K, Kanellopoulos N. Vehicle detection and counting using haar feature-based classifier. In 8th Annual Industrial Automation and Electromechanical Engineering Conference, 2017.
  • Singh P, Tripathi M. Haar cascade classifier provides high accuracy even the images are highly affected by the illumination. International Journal of Science, Technology and Management 2013; 2: 33–37.
  • Altmann J, Sauer F. Autonomous weapon systems and strategic stability. Survival Global Politics and Strategy 2017; 5: 117–142.
  • Sathiyanarayanan M, Azharuddin S, Kumar S, Khan G. Command controlled robot for military purpose. International Journal For Technological Research In Engineering 2014; 1: 1029–1031.
  • Fofilos P, Xanthopoulos K, Romanos E, Zikidis K, Kanellopoulos N. Kerveros i: An unmanned ground vehicle for remote-controlled surveillance. Journal of Computations and Modelling 2014; 4: 223–236.