Flag Counter
AKILLI SİSTEMLER VE UYGULAMALARI DERGİSİ
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Heart Sounds Analysis and Classification Based on Long-Short Term Memory

Uzun-Kısa Vade Hafıza Tabanlı Kalp Ritmi Analizi ve Sınıflandırması

How to cite: Çancıoğlu E, Şahin S, İşler Y. Heart sounds analysis and classification based on long-short term memory. Akıllı Sistemler ve Uygulamaları Dergisi (Journal of Intelligent Systems with Applications) 2020; 3(1): 25-28. DOI: 10.54856/jiswa.202005104

Full Text: PDF, in Turkish.

Total number of downloads: 1102

Title: Heart Sounds Analysis and Classification Based on Long-Short Term Memory

Abstract: In this study, the development of an algorithm for the classification of heart sound phonocardiogram waveforms such as Normal, Murmur, Extrasystole, Artifact. By presenting the approach used for classification from a general machine learning application point of view, the types of classifiers used were detailed by comparing their features and their performance. The Long-Short Term Memory method which supports the classification of each cardiac cycle in sound recordings. In addition to the LSTM-based features, our method incorporates spectral features to summarize the characteristics of the entire sound recording.

Keywords: Heart sounds; classification; LSTM; RNN


Başlık: Uzun-Kısa Vade Hafıza Tabanlı Kalp Ritmi Analizi ve Sınıflandırması

Özet: Bu çalışmada, kalp sesi fonokardiyogram dalga formlarının Normal, Hırıltılı, Ekstrasistol ve Yapay gibi kategorilere sınıflandırılma çalışması yapılmıştır. Sınıflandırma için kullanılan yaklaşımı genel bir makine öğrenimi uygulama bakış açısından sunarak, özellik çıkarma, performanslarını karşılaştırarak kullanılan sınıflandırıcıların türleri detaylandırıldı. Çalışmada kullanılan Uzun-Kısa Vadeli Hafıza (LSTM) metodu, ses kayıtlarındaki her bir kardiyak döngünün sınıflandırılmasını destekler. LSTM tabanlı özelliklere ek olarak, yöntemimiz tüm ses kayıtlarının özelliklerini özetlemek için spektral özellikler içerir.

Anahtar kelimeler: Kalp ritmi; sınıflandırma; LSTM; RNN


Bibliography:
  • McConnell ME. Pediatric Heart Sounds. Springer Science & Business Media, 2008.
  • Balili CC, Sobrepena M, Naval PC. Classification of heart sounds using discrete and continuous wavelet transform and random forests. In 3rd IAPR Asian Conference on Pattern Recognition, November 3-6, 2015, Kuala Lumpur, pp. 655-659.
  • Moukadem A, Dieterlen A, Brandt C. Shannon entropy based on the S-transform spectrogram applied on the classification of heart sounds. In IEEE International Conference on Acoustics, Speech and Signal Processing, May 26-31, 2013, Vancouver, Canada, pp. 704-708.
  • Zhang D, He J, Jiang Y, Du M. Analysis and classification of heart sounds with mechanical prosthetic heart valves based on HilbertHuang transform. International Journal of Cardiology 2011; 151(1): 126–127.
  • Kao WC, Wei CC. Automatic phonocardiograph signal analysis for detecting heart valve disorders. Expert Systems with Applications 2011; 38(6): 6458–6468.
  • Huiying L, Sakari L, Iiro H. A heart sound segmentation algorithm using wavelet. In Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, October 30-2 November 2, 1997, Chicago, IL, USA, pp. 1630-1633.
  • Yuenyong S, Nishihara A, Kongprawechnon W, Tungpimolrut K. A framework for automatic heart sound analysis without segmentation. BioMedical Engineering OnLine 2011; 10: 13.
  • Deng SW, Han JQ. Towards heart sound classification without segmentation via autocorrelation feature and diffusion maps. Future Generation Computer Systems 2016; 60: 13–21.
  • Bentley P, Nordehn G, Coimbra M, Mannor S, Getz R. Heart Sounds Classification Challenge,. Retrieved from http://www.peterjbentley.com/heartchallenge/
  • Liu C, Springer D, Li Q, Moody B, Juan RA, Chorro FJ, Castells F, Roig JM, Silva I, Johnson AEW, Syed Z, Schmidt SE, Papadaniil CD, Hadjileontiadis L, Naseri H, Moukadem A, Dieterlen A, Brandt C, Tang H, Samieinasab M, Samieinasab MR, Sameni R, Mark RG, Clifford GD. An open access database for the evaluation of heart sound algorithms. Physiological Measurement 2016; 37(12):2181-2213.
  • Kohavi R, John GH. Wrappers for feature subset selection. Artificial Intelligence 1997; 97(1-2): 273–324.
  • Whitney AW. A direct method of nonparametric measurement selection. IEEE Transactions on Computing 1971; 20(9): 1100–1103.
  • Hagan MT, Menhaj MB. Training feedforward networks with the Marquardt algorithm. IEEE transactions on Neural Networks 1994; 5(6): 989-993.
  • MacKay DJC. Bayesian interpolation. Neural Computation 1992; 4(3): 415–447.
  • Parmanto B, Munro PW, Doyle HR. Improving committee diagnosis with resampling techniques. Book Chapter in Advances in Neural Information Processing Systems (editors: Touretzky D, Mozer MC, Hasselmo M), 1996, MIT Press, pp. 882-888.
  • Polikar R. Ensemble based systems in decision making. IEEE Circuits and Systems Magazine 2006; 6(3): 21–45.
  • Huang Z, Xu W, Yu K. Bidirectional LSTMCRF models for sequence tagging. arXiv, 2015.