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Abstract—Respiratory diseases, both acute and chronic, are
widespread due to exposure to harmful substances in the en-
vironment, workplace, and through personal behaviors. Fur-
thermore, the COVID-19 pandemic has led to both short-term
and long-term lung damage in survivors. Therefore, accurate
identification of chronic respiratory diseases, in particular, is
vital for effective management and treatment. Auscultation, the
practice of listening to respiratory sounds, plays a crucial role
in diagnosing respiratory diseases. By accurately interpreting
these sounds, complemented by other clinical findings, specialists
can make reliable diagnoses with minimal errors. However, the
effectiveness of auscultation is heavily influenced by the doctor’s
experience and environmental noise. To address these limitations,
automatic classification of respiratory sounds recorded with a
digital stethoscope using expert software has emerged as a
popular research area. This approach eliminates the reliance
on subjective interpretation by specialists. Unfortunately, as with
many biomedical signals, researchers face significant challenges.
The most pressing issue is the need for high-quality, accurately
labeled, and extensive lung and respiratory sound datasets.
Additionally, removing noise that distorts these sound signals
is another major obstacle. This brief review aims to delve into
these two primary challenges and provide examples of potential
solutions from relevant literature.

Keywords—lung sound; respiratory sound; data augmentation;
noise removal

Özetçe—Çevresel faktörler, işyeri koşulları ve kişisel alışkan-
lıklar nedeniyle hem akut hem de kronik solunum hastalıkları
sıklıkla görülmektedir. COVID-19 pandemisi ise, uzun vadeli
sağlık sorunlarına yol açarak solunum sağlığı üzerinde ek bir yük
oluşturmuştur. Bu bağlamda, özellikle kronik solunum hastalık-
larının doğru teşhisi ve etkili yönetimi büyük önem taşımaktadır.
Solunum seslerinin dinlenmesi (auskultasyon), geleneksel olarak
solunum hastalıklarının teşhisinde kullanılan bir yöntemdir. An-
cak, bu yöntemin etkinliği, hekimin deneyimine ve çevresel fak-
törlere bağlı olarak değişkenlik gösterebilmektedir. Bu nedenle,
dijital stetoskoplarla kaydedilen solunum seslerinin bilgisayar
ortamında otomatik olarak analiz edilmesi, daha objektif ve
güvenilir bir teşhis yöntemi olarak öne çıkmaktadır. Ancak, bu
alandaki çalışmaların ilerlemesinin önünde bazı önemli zorluklar
bulunmaktadır. Bunlardan ilki, doğru etiketlenmiş ve kapsamlı
solunum sesi veri setlerinin yetersizliği, ikincisi ise solunum
seslerindeki gürültüyü etkili bir şekilde giderme ihtiyacıdır. Bu

çalışmada, bu iki temel zorluğa değinilerek, literatürdeki olası
çözüm önerileri incelenecektir.

Anahtar Kelimeler—solunum sesi; akciğer sesi; veri artırma;
gürültü giderme

I. INTRODUCTION

Automatic lung sound classification is an important area of
research due to the increasing prevail of respiratory diseases.
Major risk factors for lung related morbidity include smoking,
indoor and outdoor air pollution, occupational exposures, and
poverty [1]. In addition, many COVID-19 pandemic survivors
suffer from short or long-term damages to the lungs [2], [3].
Understanding the global and regional prevalence, morbid-
ity, and mortality of chronic respiratory diseases is crucial
for advancing prevention, screening, treatment, and research
initiatives [4]. Correct identification of chronic respiratory
diseases requires adequate access to and utilization of diag-
nostic instruments such as spirometry and chest imaging, as
well as efficient and practical case-finding approaches [5].
Furthermore, efforts should be directed toward promoting early
and accurate diagnosis and treatment of chronic respiratory
diseases to improve long-term clinical outcomes and reduce
premature mortality [6].

Accurate diagnosis and classification of lung diseases are
crucial for proper management and treatment. Following the
COVID-19 pandemic, naturally there has been an increase in
the studies focused on the development of diverse diagnostic
and classification tools [7]. Anamnesis (complaints), physical
examination, and, crucially, auscultation are the primary di-
agnostics tools that the specialists employ in assessing the
condition of the patient [8]. Every respiratory check-up in-
cludes an audio auscultation by which the medical specialist
listens to sounds from the patient body with different tools
(stethoscope, sonography). This shows how important sound
analysis is for lung disease detection since accurately interpret-
ing respiratory sounds, with complemented by other findings,
allows specialists to make a reliable diagnosis with a minimal
margin for error. However, the usefulness of auscultation com-
pletely depends on the doctor’s experience, time, and external

Journal of Intelligent Systems with Applications 2023; 6(2): 44-54 44



noise factors. Despite this, World Health Organization (WHO)
statistics [9] reveal that 45% of WHO Member States report
having less than 1 physician per 1000 population, which is the
WHO recommended ratio. To overcome these disadvantages,
the automatic classification of respiratory sounds recorded with
a digital stethoscope through an expert software has been pro-
posed, removing the dependence on subjective interpretation
of the specialists [10].

In classification problems, it is a well-known fact that,
independent from the classifier and the signal type, both
quantity and quality of data have dominant influence on the
success. Unfortunately, when dealing with biomedical signals,
scarcity and low quality of data are the common problems
posing a challenge which impacts the biomedical research and
application. Respiratory and lung sounds are not exceptions
in terms of these problems. Publicly available databases for
research are very few and they usually offer unbalanced data
which negatively affects research progress in sound classifica-
tion research [11]. In addition, data quality is generally low
due to many reasons such as electrical interference, muscle
movements, environmental sounds, etc. Environmental noise,
a common issue in audio recordings, significantly hinders the
performance of deep learning systems [12]. There exist other
artifacts due to recording device errors, patient movements, or
incorrect placement of sensors which are undesired effects on
signals that need to be removed for accurate analysis.

In order to deal with data quantity problem, increasing data
number by creating new synthetic data (i.e. data augmentation)
is a popular way. Contrary to the popular belief that large
datasets are always essential for optimal deep learning perfor-
mance [13], data augmentation has consistently demonstrated
its effectiveness in improving training model performance,
even with small datasets [14]. The necessity of data aug-
mentation cannot be overstated, as previous research studies
on neural network models for sound/audio classification have
shown its effectiveness in addressing overfitting and reducing
sensitivity to background noise and information redundancy
[15]–[17]. For overcoming data quality problems, there are
many methods used. These methods mostly use denoising
techniques.

In summary, in the field of respiratory and lung sound
processing, the lack of sufficient data, weakly labelled data,
unbalanced and noisy datasets affect the overall performance
of classifiers. Two primary challenges persist: the quantity and
the quality of the available data. This brief literature review
aims to identify recent research advancements addressing these
challenges within the context of lung and respiratory sound
data. Examples from the initial search findings using various
keyword combinations from the recent years are selected and
summarized.

In the following sections, we delve into the underlying
factors contributing to these challenges. Section 2 focuses
on the difficulties of obtaining sufficient amount of data,
addressing issues related to data scarcity and discuss data
augmentation techniques as a potential solution. Section 3
deals with the problem of data quality and presents examples of
studies aimed at enhancing data quality. Section 4 briefly talks
about some future research areas. Finally, Section 5 provides

a general discussion.

II. AVALIBILITY OF DATA FOR RESEARCH PURPOSES

A. Data Gathering
In signal classification problems, it is a well-established

fact that the quantity and quality of data significantly impact
success. Unfortunately, biomedical signals often suffer from
scarcity and low quality, posing a significant challenge for
research and application. In case of rare diseases or conditions,
obtaining sufficient amount of data is particularly difficult.
However, this problem is not exclusive to rare cases. Even
for common diseases or health conditions, acquiring adequate
data remains a major challenge in biomedical signals. One
primary reason for these difficulties lies in the sensitive nature
of personal health data. Strict regulations, ethical guidelines,
and the need for extensive permissions make data collection
and sharing arduous [18]–[21]. Additionally, performance eval-
uation in classification systems relies on accurately labeled
data. A significant limitation arises from the requirement
for expert knowledge to collect accurate data and annotate
it correctly. This involves expert(s) examining the data and
using their expertise to annotate, leading to lengthy and costly
data collection processes. While there are limited examples of
automated bio signal retrieval and annotation tools for non-
technical users, aimed at streamlining ground truth collection
for biomedical applications, this remains a substantial chal-
lenge [22]. Creation of large databases that is required for data
hungry deep learning based classifiers is especially difficult
due to the differences in biomedical signal recording devices
and protocols that makes data comparison and assembly diffi-
cult [23]–[30].

Large databases are often generated from different centers,
i.e., universities, hospitals, or research institutions that may
have different policies regarding data sharing, hindering data
combination, and large-scale analysis [27]. This necessitates
additional specifications for recording equipment and protocol
compatibility. Quality assurance during data acquisition is also
crucial and must adhere to structured guidelines. Unfortu-
nately, there’s a lack of universal guidelines, and these often
need to be tailored to specific databases. In conclusion, the lim-
ited availability and challenges in obtaining biomedical signal
data are due to a combination of factors. These challenges can
hinder biomedical research progress and delay the development
of new diagnostic helps. To address these issues, it is essential
to establish international standards for data sharing, develop
reliable data privacy mechanisms, and optimize data collection
processes [31], [32].

In addition, usually the primary purpose of recording
biomedical data is typically not database creation but patient
monitoring, diagnosis, or research. Therefore, naturally the
priority of health care professionals is not accumulating or
annotating data immediately. Luckily, as long as continuous
storage of data is carried out, immediate visualization or
annotation of analyzed data is usually not required [31].

Lung and respiratory sound data are not free from the prob-
lems explained above. There are not many publicly available
databases of lung sounds exist. The most widely used one
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for research and development is The International Conference
on Biomedical and Health Informatics (ICBHI) 2017 ICBHI
Respiratory Sound Database, a public database [33]. Database
comprises 5.5 hours of recordings obtained from seven dif-
ferent chest locations, namely trachea, left and right anterior,
posterior, and lateral. Recordings encompass a total of 6898
breathing cycles, which were labeled by respiratory specialists
as containing crackles, wheezes, a combination of both, or
no abnormal respiratory sounds. The sample frequencies of
the sounds in the datasets range from 4 kHz to 44.1 kHz,
and the recordings vary in duration from 10 sec. to 90 sec.
Each recording is composed of a certain number of breathing
cycles with corresponding annotations of the beginning and the
end, and the presence/absence of crackles and/or wheezes. The
cycle duration ranges from 0.2 sec. to 16 sec. and the average
cycle duration is 2.7 sec. The database includes 6898 different
respiratory cycles with 3642 normal cycles, 1864 crackles,
886 wheezes, and 506 cycles containing of both crackles and
wheezes. The database was compiled from 126 individual
participants over several years by two separate study teams
located in two countries. A total of 920 audio samples were
recorded using heterogeneous types of equipment, namely
Meditron, LittC2SE, Litt3200 stethoscopes, and AKGC417L
microphone. The respiratory cycles were also categorized into
eight distinct conditions by experts: Upper Respiratory Tract
Infection (URTI), Chronic Obstructive Pulmonary Disease
(COPD), Bronchiectasis, Pneumonia, Bronchiolitis, Asthma,
Lower Respiratory Tract Infection (LRTI), and Healthy. We
provided a detailed information about the ICBHI database
above to be able to underline some facts. Despite currently
being the largest database and serving as a benchmark for most
of the research in this field, it is not immune to the aforemen-
tioned common shortcomings. ICBHI database suffers from
the problems of very scarce data for some diseases offering
an unbalanced data set which creates serious difficulty in
classification studies that include these diseases of limited data.
Distribution of the data among disease classes also does not
reflect the corresponding prevalence of the diseases in society.
Usage of different types of equipment (one microphone and
three different digital stethoscopes), sampling with different
frequencies, existence of very noisy, even unusable data,
recordings of auscultation from different locations of chest
from different subjects, and recordings of different durations
are the aforementioned problems of creating a high quality
biomedical signal database.

In addition to ICBHI database, there are other publicly
available databases. A relatively new database, CoronaHack-
Respiratory-Sound-Dataset [34], include sound files of Corona-
affected subjects and subjects who does not have corona to
classify the respiratory sounds of healthy vs Corona-affected
patients. Multiple categories of respiratory sound files in-
clude breathing-deep, breathing-shallow, cough-heavy, cough-
shallow, counting-fast, counting-normal, vowel-a, vowel-e, and
vowel-o. User Health ailments and Corona Symptoms are also
provided. It includes 1397 user’s data from different countries.
It provides data only for a specialized area of research. Respi-
ratory Disease Detection [35] database includes 160 subject’s
audio files. 6sec. of the respiration cycle of a patient is

recorded. Database includes 7 diseases and healthy classes.
One microphone and three stethoscope is used to gathered data.
A Dataset of Lung Sounds [36] database includes respiratory
sounds from 120 subjects (35 healthy and 77 unhealthy).
Normal, asthma, COPD, BRON, heart failure, lung fibrosis,
and pleural effusion are the labels provided for the data. For
each patient disease diagnosis and the lung sound type is given
in the annotation file. Data base also have provides labeled
data for normal (35), crepitation (23), wheeze (41), crackle
(8), bronchial (1), wheeze and crackle (2), and bronchial and
crackle (2) sounds. Asthma Detection Dataset Version 2 [37] is
a specialized collection of audio samples designed to facilitate
research in diagnosing asthma and other lung conditions. This
dataset is self-created consisting of sound files segmented
into 1.5 − 5 sec. to ensure consistency and manageability
for analysis. The dataset is a good source for developing
and testing ML models aimed at detecting asthma through
the analysis of lung sounds. Database includes approximately
170 samples from the Respiratory Sound Database and 212
samples from ICBHI database, and the remaining data is
original to the database. In total, database includes 4 disease
class, asthma (288 samples), bronchial (104 samples), COPD
(401 samples), pneumonia (255 samples), and healthy (133
samples) class. Another publicly available lung sound database
is Clinical Audio Database [38]. This database offers free lung,
breath, heart, and ambient sounds in MP3 format. Data is
presented in MP3 format for easy accessibility and offers a
broader range of audio samples, including heart and breath
sounds. Unfortunately, amount of lung sound data is very
limited (10 recordings of 10 sec. to 1.4 sec.) for studies of
research purposes, but is suitable for educational purposes and
simulations. Pulmonary Sound Dataset [39] includes 532 audio
samples of crepitation, normal, rhonchi and wheezing. Each
file is 10 s long. Disease labels are not provided, therefore
database serves to a limited research area. There are also
several publicly available lung sound databases, often intended
for educational purposes that contain a limited number of
examples for each type of respiratory sound. These datasets,
typically found on repositories or CDs, often feature clear
sounds without environmental noise, making them less suitable
for training realistic classification models. Some examples are
online available at

• http://www.rale.ca
• https://www.easyauscultation.com/lung-sounds
• https://www.thinklabs.com/sound-library
• https://github.com/soundcloud

B. Data Scarcity-Data Augmentation
Creating a large, well-annotated sound recording dataset is a

time-consuming and resource-intensive process, hindering the
development of efficient classification systems. Unfortunately,
many application domains including lung sound studies do not
have access to big data; moreover, they suffer from a class
imbalance amid available databases. Especially in the field of
deep learning, model performance often improves with the
quantity of available training data. Data augmentation tech-
niques effectively generate synthetic datasets (images, sounds,
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text, etc.) and have consistently demonstrated their effective-
ness in enhancing the performance of training models for small
datasets, even in the context of sound classification tasks [14].
Given the over-parameterized nature of neural network mod-
els, data augmentation is essential for mitigating overfitting
and reducing sensitivity to background noise and information
redundancy [40]. Previous research studies on sound/audio
classification tasks have confirmed the effectiveness of data
augmentation in improving model performance [15], [16].
Data augmentation also provides a promising solution to the
legal and practical challenges surrounding clinical data. By
expanding and improving the quality of training datasets,
data augmentation techniques enable the development of more
robust deep learning models. Additionally, they address the
issue of class imbalance prevalent in many clinical databases
[41].

Data augmentation involves generating synthetic data from
existing real data while preserving the original class labels.
In the context of lung and respiratory sound classification,
real data refers to sounds directly recorded from patients,
while synthetic data is artificially created using computer-
based methods. Effective data augmentation requires domain-
specific customization to ensure that applied transformations
accurately reflect realistic variations and preserve the critical
features that differentiate various classes. In essence, data
augmentation should be tailored to the specific classification
task. The selection of appropriate augmentation techniques
depends on the characteristics of the lung sound dataset and
the desired outcomes. For example, to improve the model’s
robustness to noise, adding noise or frequency masking could
be beneficial. Conversely, to increase the dataset’s diversity,
time stretching or pitch shifting might prove effective [41]. The
choice of data augmentation schemes can significantly impact
the generalization ability of synthetic samples. Inaccurate
choices may lead to poor classifier performance. In the medical
domain, insufficient data, particularly for images and sound,
remains a major challenge. In addition, existing databases often
suffer from class imbalance, as exemplified by the ICBHI
dataset [42]. So, data augmentation is a necessity in most cases.

Data augmentation methods can be divided into four main
groups: time domain augmentation, frequency domain aug-
mentation, time-frequency domain augmentation, and other
more advanced methods. Augmentation in time domain in-
cludes time stretching which increases/reduces the sampling
rate of an audio signal without affecting its pitch, i.e., mod-
ifying the tempo of the audio, pitch shifting i.e., changing
the pitch of the audio, noise addition to simulate real world
conditions, and extracting random segments of the audio [41].

Nguyen et al. [43] employ time stretching to increase or
decrease the sampling rate of an audio signal without altering
its pitch. This technique is used to double the number of
segments for both the wheeze and crackle classes. Addition-
ally, random sampling rate adjustments, uniformly distributed
within ±10% of the original sampling rate, are implemented.
On the doubled training set, additional data augmentation
methods, such as volume adjusting, noise addition, pitch
adjusting, and speed adjusting, are randomly applied based
on predefined probabilities. Data augmentation in both time

domain and time-frequency domain is used to account for
the class imbalance of the ICBHI and the multi-channel lung
sound dataset created by the authors. They report that the
proposed systems mostly outperform all state-of-the-art lung
sound classification systems for the adventitious lung sounds
and respiratory diseases of both datasets. Gairola et al. [44]
propose a streamlined CNN-based model, RespireNet, in con-
junction with data augmentation techniques like device-specific
fine-tuning, concatenation-based augmentation, blank region
clipping, and smart padding. These methods effectively utilize
the small ICBHI dataset, comprising only 6898 breathing
cycles, which is insufficient for training a robust deep network
model. Their approach achieves a 2.2% improvement over
state-of-the-art results for 4−class classification.

In frequency domain, shifting the frequency spectrum of the
audio, randomly masking certain frequency bands, and adding
harmonics to the audio signal are methods to create synthetic
data. In time-frequency domain data augmentation approaches,
adding Gaussian noise to the time-frequency representation of
the audio, randomly masking regions of the spectrogram, and
adding harmonics to the audio signal, spectrogram flipping
by reversing the rows or columns of pixels vertically or
horizontally, respectively are some common methods [45].

Arı et al. [46] propose a data augmentation method specif-
ically tailored for respiratory sound classification. Their ap-
proach involves input transformation and migration techniques
applied to the data from ICBHI database. Experimental results
demonstrate that the proposed data augmentation methods can
enhance separation performance compared to baseline meth-
ods. Notably, these methods are easily adaptable to existing
automated auscultation systems.

Nguyen et al. [43] also use vocal tract length perturbation
(VTLP) for data augmentation. VTLP is representative of a
group of data augmentation schemes that generate new samples
through perturbing or distorting the recording spectra of the
existing training samples. VTLP is applied to enlarge the
dataset for all classes for both the original training set and
the time stretched data. VTLP selects a random wrap factor for
each recording and maps the frequency of the signal bandwidth
to a new frequency. They choose wrap factor from a uniform
distribution between 0.9 and 1.1 and set the maximum signal
bandwidth to between 3.2 kHz and 3.8 kHz. VTLP is applied
directly to the mel filter bank rather than distorting each
spectrogram. Additionally, they double the log-mel features
by adding the flipped log-mel features (in frequency axis).

Ma et al. [47] employed two basic forms data augmentation
for the training data: audio stretching (speeding up or down)
as well as Vocal Tract Length perturbation to address the
imbalance problem and to improve the robustness of the model.
Proposed model has been compared with the state-of-the-art
works using the official ICBHI 2017 challenge dataset. A per-
formance score of 52.26%, which is improved by 2.1−12.7%
compared to the state-of-the-art models is achieved.

In addition to traditional data augmentation methods, in-
novative transformation techniques have been proposed to
generate synthetic training samples, including random erasing,
scaling, masking (frequency and time), standardization, and
trimming [48].
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Other augmentation methods include data mixing, i.e.,
combining different lung sound recordings to create new
samples; or more advanced methods like using Generative
Adversarial Networks (GANs) to generate new, realistic lung
sound samples, and Cycle-Consistent Adversarial Networks
(CycleGAN)-based augmentation using CycleGANs to trans-
late lung sounds from one domain to another (e.g., healthy to
diseased), and Variational Autoencoders (VAE) [49]–[51].

The limited availability of respiratory signals has hindered
the accuracy of computer-aided diagnosis. Traditional data
augmentation approaches can distort the inherent characteris-
tics of the time-frequency representation (TFR) of the signal.
Jayalakshmy et al. [52] propose using conditional GANs to
augment the dataset. The signals are analyzed using wavelet-
based TFR, specifically scalograms. To demonstrate the im-
pact of data augmentation, classification was performed with
three pretrained classifiers. The results indicate a significant
improvement in accuracy, from 81.37% to 98.75%, achieved
using a ResNet-50 model trained on the augmented dataset.

Generative Adversarial Networks (GANs) have demon-
strated remarkable success in synthesizing realistic images.
However, their application in audio generation is less prevalent
due to the scarcity of available datasets for developing accurate
models. Yella et al. [53] propose WaveGAN, a variant of
GANs, as a solution for raw audio synthesis in a supervised
setting for classification tasks. Their method showcases one
approach for augmenting speech datasets using GANs. By
deploying WaveGAN on existing open-source datasets, they
generate synthetic, larger datasets to develop an accurate
sound-based diagnosis tool.

Saldanha et al. [54] aim to synthesize respiratory sounds of
various categories using different variants of VAE, including
MLP-VAE, CVAE, and Conditional VAE. They compare the
impact of augmenting the imbalanced dataset on the perfor-
mance of various lung sound classification models. The quality
of the synthesized respiratory sounds was evaluated using
metrics such as Frechet Audio Distance, Cross-Correlation,
and Mel Cepstral Distortion. Significant improvements in
classification performance metrics were observed for certain
minority classes when the imbalanced dataset was augmented,
while marginal improvements were noted for other classes.
The results demonstrate that deep learning-based lung sound
classification models offer promising solutions compared to
traditional methods and can achieve substantial performance
gains when trained on augmented, imbalanced datasets.

Soni et al. [55] used augmentation-based contrastive learn-
ing methodology as the base line for comparison to supervised
learning using limited labeled data. For generating contrastive
views, they use augmentations to hide spectrogram information
(time and frequency dimensions) from the model and ap-
plied splitting, time masking, frequency masking, spectrogram
masking, and spectrogram masking and splitting. The study
paves the path for medical applications of contrastive learning
that leverage clinical information.

III. DATA QUALITY-NOISE

Data quality is another problematic area when it comes to
biomedical signals. Several reasons, mostly inevitable, dete-

riorate the quality of signals. Electrical interference, muscle
movements, environmental sounds, and other factors can in-
troduce noise into biomedical signals, lowering the quality
of signals to lead difficulty in making analysis. In addition,
there exist other artifacts due to recording device errors,
patient movements, or incorrect placement of sensors which
are undesired effects on signals that need to be removed for
accurate analysis.

Lung sound data suffers from bunch of distorting effects
unique to biomedical signals. Therefore, preprocessing tech-
niques as the first stage to enhance the quality of the ausculta-
tion recordings is a necessity in most of the cases. Successful
lung sound extraction from lung auscultations recordings re-
quires precise filtering. The choice of preprocessing techniques
depends on the specific characteristics of the lung sound
data, the desired features, and the machine learning algorithm
used. Experimentation is often necessary to find the optimal
combination of techniques for a given task.

Noise in lung sounds can be broadly divided into two main
groups: interference of heart sound and ambient noise. The
sounds should be cleaned from these interferences by data
cleaning procedures. However, data cleaning must maintain
a high peak-signal-to-noise ratio without removing desirable
signal information [56]. To get a clean auscultation signal,
other noise factors such as periodic noise, DC offsets, baseline
errors, harmonic noise, etc. must also be addressed. These
types of noises are relatively easier to handle.

A. Heart Sound Removal
One of the primary challenges in lung sound analysis is

the unavoidable interference of heart sounds during recording.
The heart sound (HS) is the major noise, which complicates
the lung sound signal processing and can interfere with the
clinical interpretation of lung sounds, particularly in the low-
frequency range at low flow rates. It’s therefore desirable
to eliminate the influence of HS on lung sound recordings.
The heart and lung sound signals overlap in the time and
frequency domains, therefore removing HS interference from
respiratory sound recordings is a challenging task. In addition,
lung and heart sounds are weaker than environment noises,
and have frequency bands which overlap significantly with
noise frequencies. Conventional denoising methods may not
be practical due to the noisy nature of the lung sound as well
as its spectral overlap with different noise sources [57].

Most common techniques in related area can be grouped as
wavelet transform-based methods such as multiresolution de-
composition, time frequency filtering, machine learning-based
methods, adaptive filtering (wiener filtering, spectral subtrac-
tion, non-stationary noise reduction), and hybrid approaches
(Combines multiple methods to achieve better results.). Below
we give some examples of hearth sound removal studies.

Pouyani et al. [58] proposed an adaptive technique based
on Discrete Wavelet Transform and Artificial Neural Network
(DWT-ANN). This new method mixes the multi-resolution
property of DWT with ANN as a nonlinear. Authors re-
ports that proposed method significantly enhanced compared
to employment of only DWT method. Hossain et al. [59]
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also employed a wavelet transform-based adaptive denoising
technique to mitigate heart sounds from lung sounds. However,
wavelet-based filtering significantly reduces the average power
of lung sounds across the entire frequency range, leading to
noticeable changes in the original signal’s spectrum, which
poses an important problem on feasibility of the method.
Mondal et al. [60] proposed a method based on Empirical
Mode Decomposition (EMD) technique for reducing the un-
desired heart sound interference from the desired lung sound
signals. In the study, the mixed signal is split into several
components containing heart sound, environmental noise etc.
The results of the analysis of the synthetic and real-time
recorded mixed signal show that the proposed method has
ability to remove efficiently the HS interference, without any
degradation of the quality of the reconstructed LS signal. Singh
et al. [61] examined six denoising techniques namely, Wavelet,
Savitzky Golay Moving average filter, FIR, Median filter and
Butterworth filter for heart sound removal and evaluated the
results in terms of signal to noise ratio. They reported the
superiority of wavelet denoising technique over others.

Yamuna et al. [62] employed Adaptive Variational Mode
Decomposition (AVMD) technique to remove heart sound
contaminants from lung sounds. The proposed AVMD method
initially breakdown the noisy lung sound signal into a collec-
tive of bandlimited modes called Variational Mode Functions
(VMF). Then, based on the frequency spectrum, the HS is
filtered out from the LS. The real time lung sound data is
collected from 95 participants and the performance of VMD
technique is evaluated using the statistical metrics measures.
These experimental results are found to be superior and
outperform all other recently proposed techniques. Sangeetha
and Periyasamy [63] proposed an Enhanced Variational Mode
Decomposition (E-VMD) technique to remove HS interference
from LSs effectively. The E-VMD method automatically de-
termines the mode number for signal decomposition based on
the characteristics of variational mode functions (VMFs) such
as normalized permutation entropy, kurtosis index, extreme
frequency domain, and energy loss coefficient. This method
improves denoising accuracy and computational efficacy, mak-
ing it a useful tool for improving the analysis of LS signals
and assisting in medical diagnostics. In comparison to other
denoising methods such as EMD, ensemble empirical mode
decomposition (EEMD), complementary ensemble empirical
mode decomposition (CEEMD), singular spectrum analysis
(SSA), and VMD, the new E-VMD method demonstrates
superior denoising outcome. There are various applications
of singular spectrum analysis (SSA) in biomedical signal
denoising, one of them is removing heart sounds from lung
sounds. A crucial preprocessing step in many heart sound can-
cellation methods involves localizing the primary heart sound
components. This paper employs singular spectrum analysis
(SSA), a robust time series analysis technique, to achieve this
goal. Despite the frequency overlap between heart and lung
sound components, two distinct trends can be observed in
the eigenvalue spectra. This enables the identification of a
subspace that contains more information about the underlying
heart sound. To evaluate the performance of the proposed
method, both artificially mixed and real respiratory signals

were used. Selecting an appropriate window length for SSA
results in high-quality decomposition and low computational
cost. The proposed method was compared to well-established
methods that utilize the wavelet transform and signal entropy
for heart sound component detection. Results demonstrate that
the proposed method outperforms the wavelet-based method
in terms of false detection and correlation with the underlying
heart sounds. While the performance of the proposed method
is slightly superior to the entropy-based method, its execution
time is significantly lower [64].

Pourazad et al. [65] proposed method for HS removal, based
on time-frequency filtering, demonstrated promising results in
preserving lung sound characteristics. By using multiresolution
decomposition of wavelet transform coefficients to localize HS
segments, these segments were removed from the original lung
sound record, and missing data was estimated through 2D
interpolation in the time-frequency (TF) domain. The signal
was then reconstructed in the time domain. The use of TF-
filtering introduced no noticeable clicks or artifacts in the
reconstructed signal. A common method to minimize the effect
of heart sounds is to filter the sound with linear high-pass filters
which, however, also eliminates the overlapping spectrum of
breath sounds. Iyer et al. [66] used adaptive filtering to reduce
heart sounds without significantly affecting breath sounds. The
technique is found to reduce the heart sounds by 50 − 80
percent. Singh et al. [57] proposed a 2−level multi-ensemble
filtering model with 43 filters that analyze 15 other parameters
to denoise and extract lung sound from lung auscultations to
eliminate these drawbacks. Combining LMS, NLMS, and RLS
is used for denoising process. For heart sound identification,
an ensemble of Savitzky-Golay, FIR equiripple, Butterworth,
Chebyshev, Elliptic, and wavelet filters is used. This selective
combination of filters improves PSNR by 20% compared to
sole filter performance, while signal entropy, crest factor, root
mean squared error, kurtosis, etc. also improves for different
scenarios.

Molaie et al. [67] considered the chaotic behavior of res-
piratory sound to study the stretching and folding features
extracted from the curves selected out of the trajectory. This re-
search group developed the method for heart sound suppression
using static discrete wavelet transform with an autoregressive
and moving average (ARMA) model.

Groopy et al. [68] presented novel artificial intelligence-
based Non-negative Matrix Factorisation (NMF) and Non-
negative Matrix Co-Factorisation (NMCF) methods for neona-
tal chest sound separation. To assess these methods and com-
pare them with existing single-channel separation methods,
an artificial mixture dataset was generated comprising heart,
lung, and noise sounds. Overall, both methods outperform the
existing method especially in artificial data case. Maximum of
1.12 dB signal quality improvement is achieved for the real-
world dataset.

Lozana et al. [69] investigate empirical mode decomposition
(EMD) and the S-method steepest gradient-based reconstruc-
tion algorithm for cancellation of heart sound noise from lung
sound. EMD is to decompose nonstationary and nonlinear
signals into intrinsic mode function components (IMFs). The
main advantage of this method is that instantaneous frequency
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(IF) estimated by EMD provides information about the fre-
quency content of the sound signals at each time instant. The
use of selected IMFs for feature extraction has the advantage
of low computational cost and less time consumption. The
method was evaluated using four statistical evaluation metrics:
the root mean square error (RMSE), the signal to noise ratio
(SNR), the normalized root mean square error (NRMSE), and
the percentage of correlation coefficient (percent CC). The
maximum SNR of 39.65 dB, the lowest RMSE of 0.00051,
the lowest NRMSE value of 0.00022, and the highest percent
CC of 98.45 was obtained. Hence the algorithm successfully
eliminates the heart sound noise from lung sounds for accurate
detection of lung disorder.

Al-Naggar [70] introduces a novel LS filtering method
capable of simultaneously separating heart sounds (HS) and
noise interference (NI). This method leverages the least mean
squares (LMS) algorithm in conjunction with adaptive noise
cancellation (ANC). In the second step, the reference input of
LMS-ANC is modulated to facilitate the combination of HS
and NI signals. The resulting signal is then subtracted from
the primary signal (original lung sound recording-LS). The
effectiveness of the method is evaluated using power spectral
density (PSD). The results demonstrate a clear visual differ-
ence in PSD between normal and abnormal LS recordings.

B. Ambient Noise Removal
Typically, the lung sound recording is done in a clinical

environment where different sources of ambient noises may
be present. Therefore, lung sound signal is usually corrupted
with different forms of contaminations which include back-
ground noises, power line/Radio Frequency (RF) interferences,
environmental noises, and recording artifacts. For a successful
automated lung sound based classification, the recorded lung
sound signal should be free from any noise which would
hinder signal analysis and diagnosis. As a result, numerous
studies have focused on ambient noise reduction and lung
sound enhancement [71].

A noise suppression method was proposed by Baharanchi
et al. [72] for enhancing the respiratory sound signals cor-
rupted by AWGN based on singular spectrum analysis (SSA)
combined with discrete cosine transform (DCT). Results are
significantly superior to the wavelet. Chang [73] compared
the performance of the adaptive filter based on the least
mean square (LMS), the dual-channel spectral subtraction, and
the independent component analysis (ICA) in ambient noise
reduction from pulmonary sounds. The breath sound signals
were artificially contaminated with babble noise and ambu-
lance vehicle noise. His comparative study showed that the
dual-channel spectral subtraction method was more efficient
in removing the ambient noise. Li et al. [74] used adaptive
noise cancellation (ANC) based on LMS for environmental
noise reduction and preprocessing lung sounds to classify them
into two classes: normal and abnormal. Lu et al. [75] applied a
real-time LMS adaptive filter for reducing the ambulance siren
noise in remote auscultation of the lung sounds.

Syahputra et al. [76] performed a wavelet analysis for noise
reduction in respiratory sounds. Haider et al. [77] applied

Savitzky-Golay filter to denoise breath sounds corrupted by
different levels of Gaussian noise. Meng [78] demonstrated
lung sound denoising by serially integrating an FIR band-pass
filter, a modified wavelet filter, and an adaptive filter. Shi et
al. [79] proposed a method for characteristic extraction and
recognition of lung sounds. Wavelet denoising is employed to
reduce noise in the collected lung sounds. Wavelet decomposi-
tion is then used to extract characteristic coefficients. Through
wavelet transform, the analysis of lung sounds across different
frequency bands and time positions is enabled, along with
noise reduction. The denoised lung sounds are confirmed to
be more easily distinguishable by professional doctors.

Singh et al. [80] evaluated six denoising techniques for
denoising pulmonary sounds, viz. wavelet, Savitzky Golay,
moving average filter, FIR, median filter, and Butterworth filter.
They reported the results based on the signal-to-noise ratio
(SNR) and showed that the wavelet method performed better.
Pouyani et al. [58] used a combination of wavelet transform
and artificial neural network (DWT-ANN) for denoising lung
sounds. Their results showed that the DWT-ANN performed
better than the wavelet transform method.

Fava et al. [81] highlight the effectiveness of KNN and Log-
itBoost classifiers in data cleaning and enhancing auscultation
quality for DNNs. KNN demonstrated a unique ability to iden-
tify local similarities and reject outliers, resulting in a clean
dataset and improved learning efficiency. Emmanouilidou et al.
[82], [83] demonstrated respiratory sound denoising in infants
with an average age of 12.2 months using the adaptive spectral
subtraction method. They investigated several types of noise,
such as environmental sounds, patient-specific noises such as
crying, and mechanical noise.

IV. FUTURE ASPECTS

Future studies seems to focus on several key areas including
automatic data labeling, explainability, and federative learning.
The lack of sufficient labeled data has emerged as a significant
barrier to the advancement of sound classification. This can be
attributed to several factors including data privacy concerns,
time-consuming nature of data collection, and high dependency
on expert knowledge for effective annotation. To address the
limitations of labeled data, contrastive learning methods, along
with other unsupervised learning methods, leverage unlabeled
data to learn meaningful representations [84], [85].

Explainability is another important research area when it
comes to biomedical signal processing. Facilitating clinical
interpretation, improving model development, ensuring reg-
ulatory compliance, and addressing ethical considerations in
biomedical signal classification studies are important. Explain-
able models help establish trust between healthcare providers
and patients. When users understand how a model arrives at its
conclusions, they are more likely to trust and adopt it in clinical
settings. Explainability enhances transparency, allowing users
to understand the underlying logic and reasoning behind the
model’s predictions. This can be particularly important in crit-
ical applications where transparency is essential. Explainable
models provide insights into the factors that influence the
model’s decisions. This can help healthcare providers under-
stand the underlying medical reasoning and make informed
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clinical interpretations. Explainable models can help identify
errors or limitations in the model’s logic. This information can
be used to improve the model’s performance and reliability.
By understanding the model’s reasoning, developers can more
effectively debug and troubleshoot issues. Finally, in many
regulatory environments, explainability is a requirement for
deploying AI models in healthcare. Explainable models can
help ensure compliance with relevant regulations and standards
[86]–[90].

The success of deep learning is largely attributed to the
availability of data. Data samples are frequently collected
on edge devices, such as smartphones, vehicles, and sensors,
and may not be shared due to privacy concerns. With the
emergence of the Internet of Medical Things (IoMT), massive
volumes of healthcare sensor data (HSD) are being transmitted
over the Internet, which presents various security challenges.
Healthcare data is highly sensitive and essential for patient
care. Automatic classification of HSD offers significant value
in safeguarding patient privacy. Edge computing-based feder-
ated learning has introduced novel opportunities and challenges
in this context. Federated learning provides a collaborative
framework where multiple clients work together to solve
machine learning problems under the guidance of a central
aggregator. This decentralized approach ensures data privacy
by maintaining training data locally on each device. Feder-
ated learning adheres to two key principles: local computing
and model transmission. This setup mitigates some of the
systematic privacy risks and costs associated with traditional
centralized machine learning methods. The original data of
each client remains private and is not shared or transferred.
Instead, devices utilize their local data for training, upload
their trained models to the server for aggregation, and receive
updated models from the server to achieve the learning goal
[91]–[94].

V. DISCUSSION

The field of respiratory sound classification has witnessed
significant advancements, driven by the increasing prevalence
of respiratory diseases and the limitations of traditional di-
agnostic methods. This review has highlighted two primary
challenges: the scarcity and quality of available lung sound
datasets.

The limited availability of large, high-quality lung sound
datasets poses a major obstacle in training robust classification
models. While there are publicly available datasets, many of
them are relatively small and may not capture the full spectrum
of respiratory diseases or variations in patient demographics.
Solutions to these challenges are presented by data augmen-
tation methods. Generating synthetic data from existing real
data can significantly expand the size and diversity of datasets,
improving model performance. In addition to traditional tech-
niques like time stretching, pitch shifting, noise addition, and
spectrum correction, advanced new techniques based on deep
learning such as GAN will be utilized more to augment lung
sound data. Collaborative Data Sharing can also ease the
problem. Encouraging collaboration among researchers and
institutions to share and pool lung sound data can help address

the scarcity issue. Establishing data sharing platforms and
standardized data formats can facilitate this process. Finally,
leveraging crowdsourcing platforms to collect lung sound data
from a wider population can contribute to building larger
datasets.

Noise contamination and the variability in recording condi-
tions can significantly degrade the quality of lung sound data.
These factors can hinder the accuracy of classification models.
Applying noise reduction algorithms to remove or minimize
the impact of environmental and inherit noise such as heart
sound can improve data quality. Establishing standardized
recording protocols can help ensure consistent data quality
across different studies. This includes guidelines for recording
equipment, patient positioning, and environmental conditions.
Implementing quality control measures during data collection,
annotation, and preprocessing can help identify and address
data quality issues.

Addressing the challenges of data scarcity and quality is
crucial for advancing respiratory sound classification. The
exceptional performance of deep learning methods in pattern
recognition tasks has significantly influenced modern sound
classification. Despite advancements in deep learning, these
methods still face challenges due to insufficient data availabil-
ity in audio/sound-related tasks. The scarcity of sound data
negatively impacts the performance of deep learning methods,
particularly CNNs [95]. By employing data augmentation
techniques, fostering data sharing, and implementing noise
reduction strategies, researchers can develop more accurate
and robust classification models. Future research should focus
on developing innovative approaches to overcome these chal-
lenges and improve the diagnostic capabilities of lung sound
analysis.

Future studies should also address the significant challenges
posed by large data volumes, data storage, and management
in health research. Biomedical signals often generate massive
amounts of data, demanding robust infrastructure and software
for storage, management, and analysis. While the popularity
of big data is recent, the underlying challenges have persisted
for a long time and have been actively pursued in health
research. Big data in healthcare focuses on datasets that are
too extensive, complex, or rapidly generated for traditional
healthcare providers to process and interpret using existing
tools. This is especially critical in the context of a growing pop-
ulation with an aging demographic and the evolving paradigm
of shifting towards prevention, early intervention, rapid and
reliable diagnostic tools, and optimal management of health
conditions [96], [97].

VI. CONCLUSION

Respiratory sound classification has witnessed significant
advancements, driven by the growing prevalence of respi-
ratory diseases and the limitations of traditional diagnostic
methods.Two primary challenges persist in this field: the
scarcity and quality of available lung sound datasets. Ad-
dressing these challenges is crucial for developing accurate
and robust classification models. This brief literature review
aims to identify recent research advancements addressing these
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challenges within the context of lung and respiratory sound
data. Examples from the initial search findings using various
keyword combinations from the recent years are selected and
summarized. By addressing these challenges and exploring
innovative solutions, researchers can further advance the field
of respiratory sound classification and develop more accurate
and reliable diagnostic tools.
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