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Abstract—Among biometric recognition systems, a system using
brain waves via EEG will hold a special place. The EEG signal,
with its nonlinear structure, is unique to the individual and
nearly impossible to replicate. In designing such a system, various
signal processing and classification methods are considered.
In this study, nonlinear features such as Fractal Dimension,
Second Order Sample Entropy, Quantities Graph, and Visibility
Graph were used, allowing the examination of the EEG signal
independently of the amplitude scale. To reduce computational
load, the resting state alpha waves, which are prominent features
of the EEG, were focused on, and a low number (8) of electrodes
were used. The obtained features were analyzed separately for
each electrode, aiming to identify the most distinctive feature and
electrode. The classification was performed using five different
machine-learning methods. The highest accuracy was achieved
by the Random Forest algorithm. The most distinctive electrode
and features were identified as the Fractal Dimension of the F5
electrode and the Fractal Dimension of the Oz electrode.

Keywords—EEG; biometric; Fractal dimension; Quadratic Sam-
ple Entropy; Quantiles Graph; Visibility Graph

Ozetce—Biyometrik tanima sistemleri arasinda EEG ile beyin
dalgalarinmn kullamldigi bir sistem 6zel bir yer teskil edecek-
tir. EEG sinyali nonlinear yapisiyla Kkisiye oOzgiidiir ve taklit
edilmesi neredeyse imkansizdir. Boyle bir sistemin tasarlanmasi
asamasinda farklh sinyal isleme ve smiflama yontemleri ele
alinmaktadir. Bu calismada EEG sinyalini genlik skalasindan
bagimsiz bir sekilde incelemeye firsat verecek dogrusal olmayan
Fraktal Boyut, ikinci Dereceden Ornek Entropisi, Nicelikler
Grafigi, Goriiniirliik Grafigi 6zellikleri kullanilmistir. Hesaplama
yiikiinii azaltmak icin EEG’nin belirgin o6zelliklerinden olan
resting state alfa dalgalar1 odaga alinmis ve diisiik sayida elektrot
(8) kullamilmistir. Elde edilen ozellikler her bir elektrot icin
ayr1 ayri ele ahmmis, sonucta en biiyiik ayirt ediciligi gosteren
ozellik ve elektrotun saptanmasi amaclanmistir. 5 farklh makine
ogrenmesi metoduyla simiflama gerceklestirilmistir. En yiiksek
dogruluk Rastgele Orman algoritmasimna aittir. En ayirt edici
elektrot ve ozellikler F5 elektrotu Fraktal Boyutu ve Oz elektrotu

Fractal Boyutu 6zelligi olarak bulunmustur.

Anahtar Kelimeler—EEG; biometrik; Fraktal boyut; Ikinci
dereceden ornek entropisi; Nicelikler Grafigi; Goriiniirliik Grafigi

I. INTRODUCTION

The electrical activities obtained through electroencephalog-
raphy (EEG) recordings contain certain biometric character-
istics. Clinicians can identify patterns and characteristics in
these recordings that serve as unique identifiers specific to each
patient. While the level of biometric precision in EEG may
not yet match that of fingerprints, its potential as a reliable
method for human identification warrants further investiga-
tion.Exploring the EEG as a biometric tool could enhance the
field of personal identification and contribute to advancements
in security and medical diagnostics [1]-[4].

Each biometric method undergoes evaluation based on seven
criteria: universality, uniqueness, permanence, measurability,
performance, acceptability, and circumvention [5]. Notably,
fingerprints are widely recognized for their superior perfor-
mance in identification or verification. Nonetheless, instances
have been documented where fingerprint-based authentication
systems were compromised by counterfeit fingers [6]. This
vulnerability arises from the exposure of fingerprints on the
body’s surface.

In terms of resistance to such circumvention, biometrics
stored within the body, such as vein patterns, offer greater
reliability. However, there have been instances where even
vein-based authentication systems accepted anomalies during
enrollment and verification processes. This issue stems from
the absence of liveness detection, which determines whether
an object is a component of a living organism. The imple-
mentation of a liveness detection scheme is imperative to
safeguard biometric authentication systems against spoofing
using counterfeit artifacts. Additionally, a study [7] observed
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that biometric features did not change significantly with age
in individuals followed over a period of 3 years.

In this paper, we examine the characteristics of the EEG
as a biometrics by examining 4 nonlinear features; Fractal
Dimension (FD), Quadratic Sample Entropy (QSE), Quantile
Graph (QG) and Visibility Graph (VG). These features are
used for complexity and similarity analysis while eliminating
the need for signal normalization. They focus on extracting
fundamental characteristics by rendering the one-dimensional
signal in the time domain independent of its magnitude. Self
scaling ability of these methods provide value more easy to
processed by some machine learning methods.

Conventional approaches typically do not involve specific
EEG recordings; all electrodes are used for calculation and
acquisition times are long. Furthermore, certain approaches
utilized autoregressive (AR) modeling [8] for feature extraction
and neural networks as a learning algorithm for verifica-
tion. Despite achieving verification rates exceeding 90%, their
substantial computational demands rendered them unsuitable
for practical use. To reduce computational load and identify
features that can adapt to an online process, a combination
of 8 channels(which are) and 4 nonlinear characteristics were
tested. Thus, the discriminative power of individual channels
and features can be evaluated.

II. MATERIALS & METHODS
A. EEG & Brain Wave

EEG signals measure post-synaptic brain activities through
electrical potentials from the scalp using lightweight and non-
invasive devices. Electrical changes detected macroscopically
on the scalp using an electrode are defined as brain waves.
These waves are illustrated in a graph called an Electroen-
cephalogram, where the horizontal axis represents time and
the vertical axis represents voltage. Generally brain waves are
categorized into five bands: delta (0.5-3Hz), theta (4-7Hz),
alpha (8-13Hz), beta (14-30Hz), and gamma (>30Hz). The
alpha wave emerges when the eyes are closed and relaxed;
this wave characteristic is considered an oscillator structure
that provides information transfer. Due to the being individual
alpha oscillations and their ease of detection, they have been
used as a biomarker in various studies [9].

Due to its high temporal resolution and rich dynamics, it
is considered one of the most promising biological signals for
biometric applications, alongside others such as electromyo-
graphy (EMG) and electrocardiography (ECG). Furthermore,
EEG presents several peculiarities that make it more advanta-
geous than traditional biometric modalities such as fingerprints
and iris scans in terms of robustness against spoofing attacks,
privacy compliance, and aliveness detection [10].

B. Dataset

The dataset used in the study was obtained from eyes closed
resting state EEG recordings of 20 Alzheimer’s patients. The
individuals in the set were selected as 10 men and 10 women
with similar ages and demographic characteristics. Recordings
are realized with Ant Neuro sports EEG recording devices
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with 10-20 electrode systems. Common Average Referencing
(CAR) was chosen to mitigate spatial biases, enhance the
comparability of EEG signals across channels, and optimize
the computation of various metrics such as fractal dimension,
quadratic sample entropy, quantiles graph, and visibility graph.
Original recordings has 500 Hz sampling rate for decreasing
the computational load, downsampled to 200 Hz. 1-45 Hz filter
applied on recordings.

The recordings were taken with 21 electrodes in addition
to one reference electrode in the 10-20 electrode system. To
reduce computational load, 8 of these electrodes were selected.
The electrodes (Fpz, F3, F4, C3, C4, P3, P4, and Oz) were
chosen from points close to the zentrum line.

C. Preprocessing

Artifact removal and external noise detection were per-
formed via Wavelet enhanced Independent Component Anal-
ysis (WICA) method [11]. This method, known for its effec-
tiveness in distinguishing neural signals from various forms of
noise, was implemented using a specialized MATLAB toolbox.
After wiCA, a predefined function incorporating the Artifact
Subspace Reconstruction (ASR) method [12] was used to
refine the data further to eliminate noisy segments from the
EEG traces. These methods were used in the EEGLAB toolbox
[13] in MATLAB. Besides automatic cleaning, data is visually
inspected for abnormalities and then epoched within 5 seconds
(1000 samples). Epochs are chosen manually from the regions
where the Alpha wave is at the original signal. There is no 8-
12 Hz filter usage for it. Alpha waves, which can be observed
when the eyes are closed, were chosen.

D. Nonlinear Features

The nonlinear methods used for feature extraction produce
derived quantities based on the form of the signal, which are
independent of the amplitude scale of the 1-D temporal EEG
data. This approach helps to overcome the scaling problem of
EEG data. It allows for the elimination of quantities that affect
all channels, such as electromagnetic-field noise, without the
need for filtering. Due to these characteristics, these methods
are capable of addressing a broader range of data sets.

Fractal dimension (FD) is a derived quantity used to quantify
the similarity and complexity within a signal, offering insights
into its structural properties. In this study, we utilized the
fractal dimension algorithm proposed by Katz [14]. According
to this algorithm, F'D = 1.0 for a straight line, F'D = 1.15
for a random signal, and F'D = 1.5 for a signal with the
highest similarity. An increase in FD indicates an increase in
the signal’s internal similarity and complexity.

If n is the length of a time series x;, the length of the
waveform L is calculated with the Equation 1, the diameter
of the waveform d is calculated with the Equation 2 and The
Katz fractal dimension F'D of the signal is calculated using
the Equation 3.

L= V(@ —w)+1 e))
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d =max(\/(x; — x1)2 + (1 —0)2) (2

_ log(n)
log(n) + log(d/L)

In this study, we used entropy which serves as a crucial
metric in quantifying the randomness and unpredictability of
signals, with higher entropy indicating greater irregularity and
uncertainty. In the context of physiological signals like EEG,
methods such as approximate entropy (ApEn) have been devel-
oped to assess entropy from time series data. However, since
ApEn is parameter-dependent, Richman and Moorman (2000)
[15] recommended the Sample Entropy (SampEn) method and
SampEn is preferred for processing physiological signals [16].

ApEn and SampEn are constrained by a limited range of
parameters. To overcome this limitation, Lake and Moorman
proposed the quadratic sample entropy (QSE) method [17].
By expanding the parameter scale, QSE enables the analysis
of signals with a wider range of parameters, facilitating the
examination of diverse physiological phenomena.

SampEn calculates the matches within signal segments of
length m and tolerance r. Let B; represent the number of
matches at a distance of m for each segment, and A; represent
the number of matches at a distance of m + 1. "Detailed in-
formation about the equations can be found in the study [18]."
SampEn is then calculated as the negative natural logarithm of
the conditional probability of these two cases, normalized by
the entire tolerance window as shown in Equation 4.

SampEn = — In (;‘:8) o)

To eliminate the dependency of SampEn on the tolerance
value r, this probability function is normalized by dividing
it by twice the tolerance window, resulting in the quadratic
sample entropy (QSE) criterion as given in Equation 5.

FD

3

QSE = SampEn + In(2r) %)

The quantile graph (QG) method is a time series analysis
approach used to construct a network model based on the
quantiles of the time series data. In this method, the time series
is partitioned into () quantiles, denoted as ¢1, g2, ..., ¢o. Each
quantile serves as a node in the resulting network model, and
transitions between quantiles are represented as edges.

Consequently, the complex network generated by the QG
method can be represented as ¢ = {M, R}, where M rep-
resents the number of nodes and R represents the number
of edges. To construct the network, an adjacency matrix
is created, summarizing the connections between nodes by
counting the number of reachable nodes after a certain time &
from a given node at time ¢ in the time series. After applying
suitable normalization, the adjacency matrix is transformed
into a Markov transition matrix [19].

The topology and other characteristics of the resulting
network model provide insights into the time series [20]. In
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the study the average jump length serves as a complexity mea-
sure, offering insights into the extent of transition variability
between quantiles over a specified number of steps.

The average jump length (A(k)) is calculated for various
neighborhood coefficients (k). This metric quantifies the aver-
age change in transition between quantiles over k steps and is
computed with the following Equation 6:

A(k) = étr(PWkT ) (6)

Here, W, represents the normalized adjacency matrix, W}
denotes the transpose of this matrix, P signifies the distance
between quantiles, and ¢r represents the trace operation.

The last metric used in this study was the visibility graph
(VG). Like the quantile graph approach, the VG method
facilitates the transformation of time series data into a network
structure, enabling the application of complex network theory
principles. This algorithm, proposed by Lacasa, is particularly
adept at converting fractal structures within the time series into
scale-free graphs [21].

In the VG network structure, the points in the time series
serve as nodes, and edges represent pairs of points that have
a direct line of sight to each other. The visibility between two
nodes ¢ and j is determined using a trigonometric formula
involving intervening points k is calculated with Equation 7.
. , WJ—k
z(k) < x(j) + (x(i) — x(]))j —

This process results in an unweighted orthogonal adjacency
matrix of size T'x T, where T is the length of the time series.
The complexity of this matrix is utilized as a feature of the
visibility graph, termed Graph Index Complexity (GIC) [22]
which is calculated as in Equation 8.

(N

GIC =4c¢(1—¢) )

Where c is computed with the formula in Equation 9.

Amax — 2 COS (NTH)

N—1—2COS(NLH)

Here, Anax corresponds to the largest eigenvalue of the
adjacency matrix, and N represents the number of nodes
in the visibility graph. In this study, the Lanczos algorithm
[23] was applied for eigenvalue computations to mitigate
computational costs, ensuring efficient processing of large-
scale EEG datasets.

€))

CcC =

E. Machine Learning Methods

Five different machine learning (ML) methods were tested
for the classification of the extracted features. The efficiency
of these methods will be evaluated based on specific metrics.

e Multinominal Naive Bayes (MultiNB)

e K-nearest neighbor algorithm (KNN)
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e Support Vector Machine (SVM)
e Decision Tree Classifier (DTC)
e Random Forest Classifier (RFC)

MultiNB is a generative model. MultiNB is preferred in
the case where the variables are independent, i.e., we assume
that the non-diagonal elements of the covariance matrix are
0. However, if we cannot measure the dependence between
the variables, then we can apply this classification method
by considering the variables as independent [24]. The model,
which uses Bayes’ Theorem, is based on conditional prob-
ability calculation with the help of probabilistic expressions
obtained by using the statistical properties of the data. We
think that, as if we first pick a class C at random by sampling
from P(C), and then having fixed C, we pick an x by sampling
from p(xIC). Bayes’ rule inverts the generative direction and
allows a diagnosis;

(10)

In this case, we can use a test set to find the conditional
probability of a feature for the class we are currently examin-
ing. In this way, the classification is performed by calculating
and summing the relationship between each feature and the
class in the context of conditional probability. It is a classifier
with a high computational load because the calculations will
be repeated for each variable and class.

K nearest neighbor algorithm is a nonparametric super-
vised learning algorithm. It uses proximity information to
classify or make predictions about a data point. It is also
used for regression along with classification. It is based on
the assumption that similar points will be close to each
other. Classification is carried out by label assignment, called
majority voting. While doing this, the distances of the existing
data with its neighbors are calculated and the classes of the
neighbors are kept. If the available data gets enough votes
in the majority vote, it is considered to belong to that class.
Usually, the Euclidian distance is calculated as a measure of
distance.

d(z,y) = (yi — ) an

The K value represents the neighborhood degrees. Consid-
ering the value K = 1, the current point is only assigned to
the class label with the nearest neighbor. During the training,
the distance between the current point and all other points
is calculated and the classification is performed according to
the result. In short, KNN is a supervised learning algorithm
that simply stores labeled training examples during the training
phase.

Support vector machines (SVM) are one of the most robust
prediction methods within the statistical learning framework.
The decision support method is basically a function estimation
problem [25]. If we consider y as a high-dimensional output
vector and z as a high-dimensional feature vector;
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y=(w'z)+b (12)

we can separate binary and larger data classes with a linear
function. It tries to make this separation process in a way that
maximizes the gap between classes. In the case of when given
a binary training set, the decision support machine creates a
non-probabilistic binary linear model in which newly entered
data is assigned to one class or another. In SVCs, the classes
of newly entered data are predicted based on which side of the
separator space falls.

Since SVMs provide separation with linear methods, they
have problems with datasets that cannot be linearly separable.
At this point, kernel tricks are used and some modifications are
applied to the data. These modifications aim to make the data
linearly separable without corrupting the separable structure of
the class.

Decision trees are the structures that provide the most infor-
mation to the user about the operation of the algorithm among
machine learning algorithms. The algorithm is apparent due to
the progression structures similar to flow charts. Information
such as the progress of the algorithm, the level of progress,
the stage where the error is high, and the branching structure
can be easily obtained. The structure of the branching can be
changed depending on preferences. Decision trees are one of
the most popular machine learning methods due to their simple
and intelligible structure and informative properties [26].

Forest classifiers, as the name suggests, are ensemble
methods in which more than one decision tree classifier is used.
Decision tree structures are preferred in many areas where
large data are processed, such as data mining, due to their
interpretability. RFC is a homogeneous ensemble method using
only the decision tree structure and provides a solution for
the overfitting problem encountered in decision trees; increases
accuracy. Tree structures that reach very deep structures tend
to learn irregular patterns, i.e. they have low bias and high vari-
ance. The random forest structure aims to reduce the variance
by averaging multiple deep trees trained from different parts
of the training set [27]. Although this causes a small increase
in bias and a decrease in the interpretability of the model, it
generally improves the performance of the model.

The random forest consists of a collection of tree-structured
classifiers {h(z,0),k =1,...}. Here {O;} are independent
identically distributed random vectors, and each tree votes one
unit for the most popular class in entry x [28].

In this way, the random forest classifier increases the accu-
racy by highlighting the best of its methods, and the increase in
accuracy depends on the decision trees used in the algorithm.
Features are allocated to tree structures, which in a way allows
the features that are effective in class selection to come to the
fore. In order to avoid the overfitting problem in random forest
structures, methods are used such as limiting the depth of the
trees and the number of branches. In addition, giving the inputs
randomly to the trees reduces overfitting.

F. Evaluations Metrics

There are many metrics besides accuracy in evaluating
the performance of machine learning methods. These aim to
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Figure 1: Person-based distribution of features for 2 electrodes

measure different features of the method such as selectivity,
generalization ability, and sensitivity.

True Numbers
A — 13
ceuracy Total Size of Prediction (13)

Hamming loss can be used as the opposite of the accuracy
value. Hamming loss is the ratio of false labels to the total
number of labels.

Apart from these, although the accuracy of the method is
high, it is useful to look at metrics such as precision and recall.
The data set used may not always have a balanced distribution.
In this case, although the accuracy is high, this may be due to
the abundance of instances in the data that are more likely to
be correct. Precision is a measure of how well the method, on a
per class basis, separate that class from the others. It measures
how precise the method is when viewed for all features. This
score is included in the study by taking the average for all
classes.

Precisi TP (14)
recision = ————
(TP + FP)

Another metric in this context is the Recall value. This
metric, more commonly called sensitivity in the medical field,
is a measure of how accurately the class label currently under
investigation is estimated [29]. This score is included in the
study by taking the average for all classes.

TP

Recall = SenSItIVIty = m

s)

Another metric frequently used in the medical field is the
specificity [12]. This metric is a measure of how well the
classes other than the current class are predicted. In a way, this
metric measures how much false alarm the method gives. It is
mostly used in binary applications and is the 1’s complement
of the Recall metric. For this reason, in this study, the Recall
metric is included instead of specificity.

TN
- (I'N + FP)

Some combined methods are used for performance mea-
surement. One of these metrics, the fl1 score, consists of a
combination of Precision and Recall values. There is an inverse
relationship between Precision and Recall, one may need to be
sacrificed to increase the other one. F1 score extracts a criterion
from the conflict of these two values.

Specificity (16)

Fl = 2. Pr?({ision - Recall a7
Precision + Recall

This score is included in the study by taking the average for
all classes.

III. RESULTS

The distributions of the obtained nonlinear features for 4
electrodes are shown in Fig. 1. As seen in the distribution
graphs, locational changes have less impact on the distribution
compared to feature changes. The features show more varied
distributions among individuals and provide clearer informa-
tion for differentiation.
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Figure 2: Confusion Matrices

Methods
MultiNB KNN SVM DTC RFC
Accuracy 0.639 0.944 | 0.861 0.861 0.972
Hamming Loss 0.361 0.056 0.139 0.139 0.028
f1 score 0.627 0.937 0.91 0.813 | 0.943
Sensitivity 0.612 0.947 | 0.947 | 0.815 | 0.947
Selectivity 0.708 0.93 0.904 | 0.852 | 0.939

Table I: Evaluation metrics results

According to the evaluation metrics most successful method
is the Random Forest algorithm. The algorithm, which uses a
100-tree structure with default values, uses the “gini” method
as the evaluation criterion. By using different parameters,
gives more low accuracy values. Therefore results of these
parameters are not included the work.

After the Random Forest algorithm, the next most successful
method was KNN with an accuracy of 0.94. In the KNN
algorithm, 5 neighborhoods are looked at, and the method to
be used in determining the most neighbors is automatically
determined. Euclidean distance is used to calculate the distance
between neighbors. With the current parameters, the classifier
has high accuracy after RFC. This result gives the idea that
class properties form clusters in multidimensional space.

Following them, SVM and Decision Tree algorithms come
with slightly lower accuracy. RFC is an algorithm where
a large number of Decision Trees are tried with different
parameters. As a result, when the optimal parameter values
obtained in RFC are applied to Decision Tree, the same result
will be obtained. The high accuracy value of SVC may be
due to the implementation of the kernel trick in the default
parameters. When the kernel trick method is taken as linear,
the accuracy of the algorithm decreased a lot.

MultiNB has very low accuracy. The overlap of feature
distributions can make them appear dependent, which is not
suitable for an algorithm based on Bayes’ theorem. Also,
obtaining poor results when the kernel trick is not applied in
the SVM algorithm suggests that the features have low linear
separability.

IV. CONCLUSION

In the authentication using the brain wave, we proposed
nonlinear features with different electrodes. In doing so, we
preferred epochs where we observed alpha oscillations. We
demonstrated that these oscillations, which are thought to be
related to information transmission, are unique to individuals
and suitable for use as a biometric marker. Various methods

were tried in processing the extracted features to select the
one that could provide the best identification. According to
the obtained results, the RFC method distinguished individuals
with high accuracy. Due to the method’s traceability advantage,
the most important features were identified as the Fractal
Dimension of the F5 electrode and the Fractal Dimension of
the Oz electrode. The results are consistent with study [9]
suggesting that biometric identification can be performed with
a smaller number of electrodes. It suggests that a biometric
system could be developed using only these two electrodes.
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