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Abstract—Electromyography has been used for Human-
Computer interactions (HCI). Gesture recognition such as hand
and finger movements is helpful to have a better HCI experience.
This study investigates methods used on a publicly available
dataset. To the best of our knowledge, this dataset has never been
used with wavelets previously. This study uses Discrete Wavelet
Transforms (DWT) with three different wavelets such as Symlet 4,
Daubechies 4, and Haar wavelets. The time and frequency domain
features have been extracted from the result of the DWT which
uses three different wavelets. The features have been tested with
a proposed Convolutional Neural Network (CNN) model. To the
best of our knowledge, this CNN architecture hasn’t been used
before. The results with different metrics and confusion matrix
for each trial are given in the results section. The highest and
the lowest accuracy rates have been achieved with the Symlet 4
wavelet and Haar wavelet, respectively. The performance ranking
of the reported wavelets is Symlet 4, Daubechies, and Haar with
accuracy rates of 91.56%, 90.66%, and 90.02%, respectively.

Keywords—finger movement recognition, surface electromyogra-
phy, convolutional neural networks, discrete wavelet transforms

Ozetce—Elektromiyografi (EMG), insan-Bilgisayar Etkilesim-
leri (IBE) icin kullamlmaktadir. El ve parmak hareketlerini
iceren jest tammma, daha iyi bir HCI deneyimi sunmak icin
faydah olabilmektedir. Bu calisma, topluluga acik bir veri seti
iizerinde dalgaciklarm kullanimim arastirmaktadir. Bildigimiz
kadariyla, bu veri seti daha once dalgacik yontemi uygula-
narak Kkullamlmamistir. Bu calismada, Symlet 4, Daubechies 4
ve Haar dalgaciklar1 olmak iizere ii¢ farkh dalgacikla Ayrik
Dalgacik Déniisiimlerini (ADD) kullanilmistir. Zaman ve frekans
alam oznitelikleri ADD’nin sonuclarmdan ¢ikarihmstir. Onerilen
Evrisimli Sinir Ag1 (Convolutional Neural Networks - CNN)
modeli ile oznitelikler test edilmistir. Bildigimiz kadariyla, bu
CNN mimarisi daha énce kullamlmamistir. Farkli metrikler ve
her denemeye ait karmasikhk matrisleri sonuclar bdliimiinde
sunulmustur. En yiiksek ve en diisiik dogruluk oranlar: sirasiyla
Symlet 4 dalgacigi ve Haar dalgacig: ile elde edilmistir. Rapor
edilen dalgaciklarin performans siralamasi Symlet 4, Daubechies
ve Haar olup, sirasiyla %91,56, %90,66 ve %90,02 dogruluk
oranlarma sahiptirler.

Anahtar Kelimeler—parmak hareketi taninmasu, yiizey elektro-
miyografisi, evrigimsel sinir aglar, ayrik dalgacik doniisiimleri

I. INTRODUCTION

Hand gesture recognition has an important role in Human-
Computer Interactions (HCIs) to be used on systems such as
prostheses and device control systems [1]. To build a sys-
tem that recognizes hand gestures, several biomedical signals
including steady-state visual-evoked potentials (SSVEP) [2]]—-
[8]], electroencephalography (EEG) [9]—[11]], and electromyo-
graphy (EMG) [12], [13] have been used in the literature.
information about muscle activity is required. The recording
of muscle activity is called electromyography (EMG) and can
be recorded by using invasive or non-invasive methods [14].
The muscle activity recorded by using non-invasive electrodes
is called a surface electromyogram (sEMG) [15]]. In previous
studies, many different EMG datasets have been used with
different methods. In some studies, researchers have built
their datasets and worked on those datasets [16]]-[23]] and on
some other researchers have used datasets which were already
collected and published on different platforms [24], [25]]. Re-
searchers have worked on both time and frequency domains to
successfully classify the EMG signals. EMG signals have been
classified from their raw version, with the features extracted
from their raw version and the preprocessed versions of the
raw signals’ features. Geng et al. have introduced a method
to classify the SEMG signals from the SEMG signal images
[26]. They have compared Hyper-Parameter (HD) configura-
tion results and different databases with different classification
algorithms including their ConvNet architecture. They have
achieved an 89.3% accuracy rate. Zhou et al. compared the
Random Forest classifiers’ (RF) classification results of the
time-domain features they extracted one at a time and as a
group of features and achieved a 92.94% accuracy rate [24].
Wahid et al. have followed a strategy called the Multi Window
Majority Strategy to improve the classification accuracy [25].
They have used different windows varied between 50ms and
500ms and they have set overlapping ranges between 0% and
80% rate. In the results of their comparison, the best result they
achieved was from an RF classifier with an 80.70% accuracy
rate.
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Too et al. have used both time-domain and frequency-
domain features and compared the results based on the Linear
Discriminant Analysis (LDA) classifier [22]. Researchers have
acquired their dataset which includes six different finger move-
ments. Researchers have used Fast Fourier Transform (FFT)
to convert EMG signals into frequency domains. The results
they have reported show that they have achieved a 91.34%
accuracy rate using frequency domain features while the time
domain features’ accuracy results were 87.17%. Altin et al.
have published another research that compares time and fre-
quency domains [23]]. Researchers have first acquired the EMG
signals from the elbow. Their dataset includes two different
classes (elbow flexion and elbow extension). Researchers have
extracted 11 features from the time domain and 6 different
features from the frequency domain. They have compared all
feature performances separately based on the results of K-
Nearest Neighbor (kNN) classifiers’ results and the best results
they have achieved are from the AutoRegressive Coefficient
feature from the time domain and Median Frequency from the
frequency domain with the result of 93% and 83% accuracy
rate, respectively. Duque et al. have used Discrete Wavelet
Transform (DWT) and kNN to diagnose neuromuscular dis-
orders [27]]. Researchers have used Daubechies order eight
wavelet as wavelet and extracted six statistical features from
the results of the DWT. They have compared the classification
results of the features with and without relevance analysis. The
best result they have achieved is a 93.08% accuracy rate with
stochastic relevance measure. Phinyomark et al. have classified
EMG patterns from Wavelet Transform Coefficients [28]. They
have focused on finding the optimal wavelet function and
the wavelet component type. They extracted a total of 25
features based on time and frequency domains and compared
the performances.

In this study, authors have used DWT with different wavelets
and compared their results based on the classification perfor-
mances of the CNN model. The used wavelets are Daubechies
4, Symlet 4, and Haar wavelets.

II. METHODS
A. Dataset

The EMG dataset has been taken from a publicly available
source [29]. The dataset includes sSEMG recordings of seven
different finger gestures which are thumb, index finger, middle
finger, ring finger, little finger, rest, and the victory gesture. The
EMG recordings have been made from the Thalmic Labs MYO
Armband device. The data were acquired from 10 subjects
while they were performing the gesture [[17] for 20-30 trials.

B. Discrete Wavelet Transform (DWT)

DWT has been evaluated with three different wavelets which
are Daubechies 4, Haar, and Symlet 4. Decomposition has
been limited to six and only sixth-level coefficients have been
used from all of the DWTs. Both time and frequency domain
features have been extracted from the DWT results. All DWT
processes have been evaluated with a Python library named
PyWave [30].
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C. Feature Extraction

Both time and frequency domain features have been ex-
tracted from the DWT results. Features have been extracted
from the EMG signals received on each sensor. The extracted
time domain features are root mean square (RMS), waveform
length (WL), mean absolute value (MAV), variance (VAR), and
standard deviation (STD) and the extracted frequency domains
are mean power frequency (MPF), total power (TTP), mean
frequency (MF), median frequency (MDF) and frequency
ratio (FR). After extracting features, the total feature number
becomes 80 ( 8 sensors x 10 features).

1) Time Domain Features:

e Root Mean Square (RMS): Root mean square is a time
domain feature and calculated using Equation [T}

ey

where, x is the voltage value at ith sampling and N is
the range of the window [31]].

e Wavelength (WL): Wavelength is the cumulative length
of the EMG signal over time and is a measure of the
complexity of the EMG signal [32]. It is calculated using
Equation [2]

N-1
WL=|ni1 — x| )

n=1

e Mean Absolute Value (MAV): Mean absolute value
feature is an average of the absolute value of the EMG
signal voltage value in a time and calculated using
Equation [3] [32].

1 N-1
MAV = ; EN 3)

e Variance (VAR): VAR is calculated by the power of the
EMG signal. Since the mean value of the EMG signal is
close to zero, the mean value of the EMG signal has been
kept out [33]]. VAR feature calculated using Equation [4]
[23]].

1 N
2
VAR_N_I;% )

e Standard Deviation (SD): Standard Deviation represents
interference such as noise and measures the spread of
the signal values from the mean calculating with the
comparison to the mean [34]. STD features calculated
using Equation [3] [23]]

1 N
STD = | nz::l(xn —T) )
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2) Frequency Domain Features:

e Mean Power Frequency (MPF): MPF is defined as
Equation [6] which is the average power of the EMG
power spectrum [32]]. M is the number of samples and
P is the power spectral density of the SEMG signals.

M
MPF =" P / M (©6)

j=1

e Total Power (TTP): TTP is the sum of the EMG power
spectrum [32]]. M is the number of samples and P is the
power spectral density of the SEMG signals.

M
TTP = Z P; @)

j=1

e Mean Frequency (MNF): MNF is the average frequency
and is computed by dividing the product of the EMG
spectrum by the total sum of spectrum intensity [32]. M
is the number of samples and P is the power spectral
density of the EMG signals.

M M
MNF =3 _f:P; [ > P ®)
Jj=1 Jj=1
e Median Frequency (MDF): MDF is the half of the Total
Power feature and it can be described as the frequency
that divided the power density spectrum into two equal
regions [35]].

MDF

M 1 M
> Pi=) P=353.P ©)
j=1 j=1 j=1

e Frequency Ratio (FR): FR is the feature that is used
to distinguish between contraction and relaxation of the
muscle with the ratio of the EMG signals low and high-
frequency components [32].

ULC UHC
FR = Z P Z P (10
j=LLC j=LHC

D. Proposed Convolutional Neural Network (CNN) Architec-
ture

In this study, extracted features and their performances have
been examined with different built CNN architectures. As far
as the authors’ knowledge, this CNN model has not been
proposed yet. The CNN architecture has been given in Figure
Since the dataset is 1 dimensional (1-D), the CNN model
had to be 1-D as well. The kernel sizes started from 64 and
were rearranged by multiplying the kernel size after each layer.
Before the third layer with the kernel size of 256, 5x1 Max
Pooling has been applied (Fig. [I).
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III. RESULTS

In this study, Symlet 4, Daubechies 4 and Haar wavelets
have been used on DWT to extract the features. Features have
been extracted from the results of the DWT. Extracted features
are both time and frequency features. This study also examines
the effects of the usage of different types of features together.
The wavelet feature performances have been compared in
Table Il The table shows the performances of the wavelet and
not the features because the features have been tested together.

Wavelet name | Accuracy Precision | F1 Score Recall
Daubechies 4 90.66 90.42 90.14 90.04
Haar 90.02 89.93 89.97 90.39
Symlet 4 91.56 91.30 91.44 91.69

Table I: Comparison between the results achieved with the
features extracted from different wavelets.

As seen in Table [, the model gave the highest accuracy
with the features from Symlet 4, the second highest accuracy
with Daubechies, and the lowest accuracy rate with Haar. The
results show that square-shaped wavelets such as Haar wavelets
are not as effective as orthogonal wavelets on finger movement
classification problems with this dataset. Because the Symlet
4 wavelet gave the best accuracy resulting features it could be
said that the least symmetric wavelets are a better fit in this
problem base. The confusion matrix for the features extracted
from DWTs using Symlet 4, Daubechies 4, and Haar are given
in Figure [2] Figure [3] and Figure [] respectively.
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Figure 1: Proposed CNN Architecture.
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Figure 2: Confusion Matrix of the features extracted from
DWT using Symlet 4 wavelet.

The difference between the two highest-performing wavelets
is the victory gesture motion. The victory gesture motion has
been successfully classified from the features extracted from
the DWT results of the Symlet 4 wavelet compared to the
Daubechies 4 wavelet.

175

150

125

100

True label

75

50

25

Predicted label

Figure 3: Confusion Matrix of the features extracted from
DWT using Daubechies 4 wavelet.

The highest differences between the results of orthogonal
and square-shaped wavelets are from "1" and "2" labels in
the confusion matrix which are the labels of the little finger
motion and middle finger motion, respectively. This means that
the little finger motion and middle finger motion are hard to
recognize from the features extracted from DWT results using
the Haar wavelet.
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Figure 4: Confusion Matrix of the features extracted from
DWT using Haar wavelet.

IV. CONCLUSION AND FUTURE WORKS

This study aims to investigate the feature performances
extracted from DWTs with the usage of different wavelets. To
test the results, three different wavelets have been used. The
used wavelets are Daubechies 4, Haar, and Symlet 4. DWT has
been executed with a Python library called PyWave [30]]. This
library helps users to work on the signals. The results showed
that features extracted from orthogonal wavelets gave better
results while the features extracted from square-shaped Haar
wavelets gave the lowest accuracy. The features extracted after
the DWT using Symlet 4, Daubechies 4 and Haar wavelets
gave 91.56%, 90.66%, and 90.02% accuracy rates, respectively.
These results showed that orthogonal wavelets are better tools
for this type of problem. Different families and different
wavelets could be involved in future studies. Best of our
knowledge, the SEMG signal dataset has never been used with
wavelet transforms and this study investigates the usage and the
performance results of the wavelet transform for this dataset.
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