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Abstract—This research article is based on the development
and kinematics analysis of a novel mobile Euclidean parallel
manipulator. The mobile manipulators and parallel manipu-
lators were investigated to improve the setbacks of each of
these manipulators. The design of the new mobile Euclidean
parallel manipulator type robot manipulator is an improved
type of both mobile platforms and parallel manipulators. The
design of the mobile manipulator is created by combining the
Euclidean platform with a mobile differential drive manipulator.
To allow the design of this type of hybrid manipulator, the
kinematics of the mobile Euclidean platform manipulator and
the kinematic analysis of the new manipulator design for non-
holonomic differential mobile manipulators were performed in
two standalone sections. Finally, a test case study is provided in
a simulation environment to validate the numerical results of the
novel manipulator.

Keywords—parallel manipulators; differential drives; au-
tonomous robot; mobile parallel manipulator; hybrid robotic system.

Özetçe—Bu araştırma makalesi yeni bir mobil Öklid par-
alel manipülatörünün geliştirilmesine ve kinematik analizine
dayanmaktadır. Mobil manipülatörler ve paralel manipülatör-
ler, bu manipülatörlerin her birinin aksaklıklarını iyileştirmek
için araştırıldı. Yeni mobil Öklid paralel manipülatör tipi
robot manipülatörün tasarımı, hem mobil platformların hem
de paralel manipülatörlerin geliştirilmiş bir türüdür. Mobil
manipülatörün tasarımı, Öklid platformunun mobil diferan-
siyel tahrikli manipülatörle birleştirilmesiyle oluşturulmuştur.
Hibrit manipülatörün tasarımına olanak sağlamak için, mobil
Öklid platform manipülatörünün kinematiği ve holonomik ol-
mayan diferansiyel mobil manipülatörler için yeni manipülatör
tasarımının kinematik analizi iki bağımsız bölümde gerçekleştir-
ildi. Son olarak, yeni manipülatörün sayısal sonuçlarını doğru-
lamak için simülasyon ortamında bir test çalışması yapılmıştır.

Anahtar Kelimeler—paralel manipülatörler; diferansiyel tahrik;
otonom robot; mobil paralel manipülatörler; hibrit robotik sistem.

I. INTRODUCTION

A mobile parallel manipulator(PM) has got high interest in
recent years. Because of their high accuracy, velocity, stiffness,
and payload capacity, the progress of parallel manipulators
is accelerated since they outperform their serial counterparts
[1]. However, the main drawback of PMs is their limited

workspace, which restricts their applications [2]. Recently,
many researchers have worked on parallel mobile robot design
mechanisms [3]–[5]. Since a mobile parallel manipulator pos-
sesses the advantages of both a mobile robot and a parallel
robot, it is a potential competitor in extensive applications
where high accuracy operation, high rigidity, and payload
capacity are required. One notable work is the Gough platform
developed for use in the tire factory [6]. Later, this platform
structure was generalized and widely used as the Stewart-
Gough platform [6]. In the next years, there has been more
interest in the analysis and synthesis of parallel manipulators
[7]. Mobile robots have been used widely in such areas
as automatic material handling in warehouses, transportation
and health care in hospitals, and exploration in hazardous
environments. Thus, as a result, there is a high interest in this
area especially differential drive(DD) robots. This type of robot
consists of 2 drive wheels mounted on a common axis, and
each wheel can be independently driven either clockwise or
counterclockwise. By varying the velocities of the two wheels,
we can control the trajectories that the robot takes [8].

In this paper, we will implement a combination of a hybrid
robot solution which is a mobile manipulator with a differential
drive system, combined with a 3-revolute-revolute-spherical
(RRS) parallel manipulator. In this research, we will utilize
the Inverse kinematic analysis of a 3-RRS PM which has been
performed by Li et al. [9] where the analysis is performed
by using a geometrical approach. Forward kinematics of 3-
PRS PM is performed by Tsai et al. [10] where he used
Bezout’s elimination method which is also applicable to our 3-
RRS PM. Similar research has also been performed on 3-RRS
parallel manipulators [11]. Then, the kinematics analysis of the
combined 6 DoF manipulator is calculated. Inverse kinematics
analysis of PM to be solved analytically. Forward kinematics
of differential drive mobile manipulator presented as using a
suggested solution by [10]. The Kinematics of the differential
drive system is widely known and we will utilize the control of
the DC motor with the kinematics of the DD platform [8], [12].
Finally, a numerical case study was performed as a validation
action of the formulations.
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II. KINEMATICS & CONSTRAINTS OF PARALLEL
MANIPULATOR

A. Kinematics of Mobile Parallel Manipulator
A manipulator or mechanism’s displacement and variation in

displacement can be investigated using a variety of techniques.
While using a computer graphical approach is simple, it is
not practical when the complete motion of the manipulator
is taken into account. Therefore, the analytical approach is
convenient to explain the whole motion of the manipulator.
But, in parallel manipulators’ forward kinematics case, it’s
very hard to compute analytically. Therefore, we will utilize
Bezout’s elimination method to compute forward kinematics
which was used by Tsai et al [10]. The Kinematics diagram
of the PM body is given in Fig. 1 and the first dyad is given
in Fig. 2.

Figure 1: Kinematics model of 3-RRS Parallel Manipulator

The body of PM consists of a base which is a mobile
platform but will be regarded as fixed to solve PM equations,
three identical dyads, and a moveable platform. The dyads are
a combination of 2 R joints with a link length of ℓ1 and ℓ2.
Between link ℓ2 and moveable, there is a S joint. The origin
of base frame is given as OB0

, and each connection point
in base platform stated as OB1

, OB2
and OB3

. The distance
from base origin to revolute connection points is chosen as an
equal b distance. The X0 axis is along the vector b⃗1 and the
Z0 axis is perpendicular to the base plane. The top moveable
platforms frame is located at the center of the platform and
the origin of the frame is shown as OM0

. The distance to
moveable platform spherical connection points are given as an
equal distance of r. The X1 axis is along m⃗1 vector and Z1 axis
is perpendicular to platform. . In all of the dyads, the axes of
the active and passive revolute joints are parallel to each other.

Figure 2: Kinematics model of 3-RRS Parallel Manipulator

To have an equal offset from the base frames, the connection
points are positioned at the vertices of an equilateral triangle.
This means that the angle between X axes of coordinate
frames and each connection vector are equal to 120o. This
results, α1 = ̸ X⃗0O⃗B1 = 0°, α2 = ̸ X⃗0O⃗B2 = 120°,
α3 = ̸ X⃗0O⃗B3

= 240°. The manipulator is actuated by
angle of rotations variables θ1, θ2 and θ3 and the passive
joint variables are given as ϕ1, ϕ2, and ϕ3. Mobile platform
kinematics will be investigated in a separate section.

B. Position Analysis of Parallel Manipulator

Each dyad is constrained to move in a plane. Constraint
equations due to this planar motion are derived by Tsai et al.
[1] for 3-PRS PM and these equations are valid for this type
of 3-RRS PM as it’s stated. To generate the rotation matrix
R between B and M frames, X-Y-Z Euler rotation sequence is
used. This means first a rotation around Z axis with an angle
of ψz , then a rotation around Y axis with an angle of ψy , and
finally a rotation around X axis with an angle of ψx. Then we
found the matrix R as:

R =

[
cycz −cysz sy

sxsycz + cxsz cxcz − sxsysz −sxcy
−cxsycz + sxsz sxcz + cxsysz cxcy

]
(1)

where s and c stand for sin and cos and subscripts x,y,z stand
for rotation angles ψx, ψy, ψz respectively. Only two elements
of R are independent. In the workspace of the 3-RRS PM,
the independent parameters are ψx and ψy and OMz

. Position
vector of the origin of the moveable platform coordinate frame
represented by the base frame:

O⃗mb =
[
OMx

OMy
OMz

]T
(2)
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OM1 is constrained on xz plane:

⃗OM1 =

[
OMx + rcycz

OMy + r(sxsycz + cxsz)
OMz

+ r(−cxsycz + sxsz)

]
(3)

OM2 is constrained on y = tan(120)x plane:

⃗OM2 =
OMx

+
r

2
(−cycz −

√
3cysz)

OMy +
r

2
(−sxsycz − cxsz) +

√
3(cxcz − sxsysz)

OMz +
r

2
(cxsycz − sxsz) +

√
3(sxcz + cxsysz)

 (4)

OM3 is constrained on y = tan(240)x plane:

⃗OM3 =
OMx

+
r

2
(−cycz +

√
3cysz)

OMy
+
r

2
(−sxsycz − cxsz)−

√
3(cxcz − sxsysz)

OMz
+
r

2
(cxsycz − sxsz)−

√
3(sxcz + cxsysz)

 (5)

From equations (3)–(5):

OMy
= −r(sxsycz + cxsz) (6)

OMy =
r

2
(sxsycz + cxsz + 3cysz)

+

√
3

2
(−2OMx

− rcxcz + rcycz + rsxsysz)
(7)

OMy
=
r

2
(sxsycz + cxsz + 3cysz)

+

√
3

2
(2OMx + rcxcz − rcycz − rsxsysz)

(8)

Since equations (6) and (7) equal to each other, we can solve
for the unknown ψz parameter. When we do the mathematical
operations ψz results in:

ψz = arctan(
−sxsy
cxcy

) (9)

Then we can find the values of OMx
and OMy

when we register
known manipulator parameters to the equations(6) and (7).

C. Inverse Kinematics of Parallel Manipulator
In this chapter, the input angles θ1, θ2 and θ3 are to be

found for given independent pose parameters ψx,ψy and OMz

of the moveable platform. For the first dyad, the loop closure
equation is:

O⃗mbm⃗1 = b⃗1 + ℓ⃗1 + ℓ⃗2 (10)

The locations of Om1,Om2 and Om3 are calculated from
the equations (3)–(5). Then using (10), the right side of the
equation becomes:

x : ℓ2cϕ1cα1 = OM1x − cα1(b+ ℓ1cθ1)) (11)
y : ℓ2cϕ1sα1 = OM1y − sα1(b+ ℓ1cθ1)) (12)

z : ℓ2sϕ1 = −OM1z − ℓ1cθ1 (13)

By multiplying equation(11) with cα1, then taking the square
of it and adding up with the equation(13) we can eliminate ϕ1
from the equation. Thus, we can solve the simplified equation
to find θ1. This requires the usage of inverse functions to find
values for cθ1 and sθ1. Once the input variable θ1 is found,
the passive joint angle of the dyad can be solved by inserting
values to equations(11)and (13). First we find cϕ1 and sϕ1,
then using atan2 for ϕ1:

cϕ1 =
OM1x − cα1(b+ ℓ1cθ1))

ℓ2cα1
(14)

sϕ1 = −OM1z + ℓ1sθ1
ℓ2

(15)

ϕ1 = atan2(cϕ1, sϕ1) (16)

The equations found are valid for all of the dyads.
To prove the inverse kinematics solution, a numerical ex-

ample is to be given here. Pose parameters inputs are chosen
as OMz

= 0.25m, ψx = −10◦, ψy = 15◦ for the body
parameters ℓ1 = 0.147m, ℓ2 = 0.194m, b = 0.25m,
r = 0.216m. The formulation is then implemented into
educational mathematical computation software, and an inverse
kinematics solution is found. First, the task space parameters
are found as t⃗ =

[
OMx OMy OMz ψx ψy ψz

]T
=

[−0.002 0.005 OMz
−10◦ 15◦ 1.32◦]

T . Then active
joint variables found as θ1 = (−168.91◦,−36.39◦), θ2 =
(−147.99◦,−45.33◦), θ3 = (−125.60◦,−71.11◦). The
passive joint variables are the obtained as ϕ1 =
(−58.73◦,−146.57◦), ϕ2 = (−60.39◦,−132.93◦), ϕ3 =
(−78.06◦,−118.65◦). As our geometry constraints restrict the
dyads facing outwards, the preferred set of solutions where the
dyads are facing inwards is plotted in Fig. 3.

Figure 3: Inverse Kinematics Result

There are a total of 8 inverse kinematics solutions for
different configurations of the dyads. Because of geometry
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constraints reasons, we only used the first set of configurations
for the inverse kinematics analysis.

D. Forward Kinematics of Parallel Manipulator
In this section, the pose parameters ψx,ψy and OMz

of
the moveable platform are to be found for given input joint
variables θ1, θ2 and θ3. To satisfy this, the locations of OM1,
OM2 and OM3 will be computed in terms of active and passive
joint variables by using equation(10).

⃗OM1 = b⃗1 + ℓ⃗1 + ℓ⃗2 =

[
cα1(b+ ℓ1cθ1 + ℓ2cϕ1)
sα1(b+ ℓ1cθ1 + ℓ2cϕ1)

−ℓ1sθ1 − ℓ2sϕ1

]
(17)

⃗OM2 = b⃗2 + ℓ⃗3 + ℓ⃗4 =

[
cα2(b+ ℓ1cθ2 + ℓ2cϕ2)
sα2(b+ ℓ1cθ2 + ℓ2cϕ2)

−ℓ1sθ2 − ℓ2sϕ2

]
(18)

⃗OM3 = b⃗3 + ℓ⃗5 + ℓ⃗6 =

[
cα3(b+ ℓ1cθ3 + ℓ2cϕ3)
sα3(b+ ℓ1cθ3 + ℓ2cϕ3)

−ℓ1sθ3 − ℓ2sϕ3

]
(19)

Since the moveable platform has an equilateral triangle
shape with a side length of |OM1OM2| = |OM2OM3| =
|OM3OM1| = r

√
3:

cα2(b+ ℓ1cθ2 + ℓ2cϕ2 − cα1(b+ ℓ1cθ1 + ℓ2cϕ1))
2

+sα2(b+ ℓ1cθ2 + ℓ2cϕ2 − sα1(b+ ℓ1cθ1 + ℓ2cϕ1))
2

+(−ℓ1sθ2 − ℓ2sϕ2 − (−ℓ1sθ1 − ℓ2sϕ1))
2 = 3r2

(20)

cα3(b+ ℓ1cθ3 + ℓ2cϕ3 − cα2(b+ ℓ1cθ2 + ℓ2cϕ2))
2

+sα3(b+ ℓ1cθ3 + ℓ2cϕ3 − sα2(b+ ℓ1cθ2 + ℓ2cϕ2))
2

+(−ℓ1sθ3 − ℓ2sϕ3 − (−ℓ1sθ2 − ℓ2sϕ2))
2 = 3r2

(21)

cα1(b+ ℓ1cθ1 + ℓ2cϕ1 − cα3(b+ ℓ1cθ3 + ℓ2cϕ3))
2

+sα1(b+ ℓ1cθ1 + ℓ2cϕ1 − sα3(b+ ℓ1cθ3 + ℓ2cϕ3))
2

+(−ℓ1sθ1 − ℓ2sϕ1 − (−ℓ1sθ3 − ℓ2sϕ3))
2 = 3r2

(22)

By using equations(20)–(22), we rewrite them by collecting
passive joint variables ϕ1,ϕ2,ϕ3:

h10 + h11cϕ1 + h12cϕ2 + h13cϕ1cϕ2 + h14sϕ1
+h15sϕ2 + h16sϕ1sϕ2 = 0

(23)

h20 + h21cϕ1 + h22cϕ2 + h23cϕ1cϕ2 + h24sϕ1
+h25sϕ2 + h26sϕ1sϕ2 = 0

(24)

h30 + h31cϕ1 + h32cϕ2 + h33cϕ1cϕ2 + h34sϕ1
+h35sϕ2 + h36sϕ1sϕ2 = 0

(25)

The three trigonometric equations(23)–(25) are nonlinear and
coupled. Thus, they must be solved simultaneously to find the
values of ϕ1,ϕ2, and ϕ3 for given input variables. We will use
Bezout’s elimination method in this paper as Tsai et al. [10]
did it for 3-PRS PM. Bezout’s elimination method is used for
reducing a set of polynomials of multiple variables into a poly-
nomial of only one variable. To be able to apply this method,
equations(23)–(25)must be transformed into polynomials. This
can be done by using tangent half-angle substitution for each
dyad:

cosϕ1 =
1− t1

2

1 + t1
2 , sinϕ1 =

2t1
1 + t1

2 (26)

where t1 = tan(ϕ1/2),t2 = tan(ϕ2/2),t3 = tan(ϕ3/2). This
transformation is valid for all dyads. Then we can get the
following equations:

g10 + g11t2 + g12t2
2 + t1(g13 + g14t2 + g13t2

2)

+t1
2(g16 + g11t2 + g15t2

2) = 0
(27)

g20 + g21t3 + g22t3
2 + t2(g23 + g24t3 + g23t3

2)

+t2
2(g26 + g21t3 + g25t3

2) = 0
(28)

g30 + g33t3 + g36t3
2 + t1(g31 + g34t3 + g31t3

2)

+t1
2(g32 + g33t3 + g35t3

2) = 0
(29)

We can further eliminate t1 by using same method for equa-
tions (27)–(28): ∣∣∣∣|A1| |A2|

|A3| |A4|

∣∣∣∣ = 0 (30)

where |*| denotes the determinant of a matrix. Where
A1,A2,A3,A4 as follows:

A1 =

∣∣∣∣g16 + g11t2 + g15t
2
2 g10 + g11t2 + g12t

2
2

g32 + g33t3 + g35t
2
3 g30 + g33t3 + g36t

2
3

∣∣∣∣
A2 =

∣∣∣∣g31 + g34t3 + g31t
2
3 g13 + g14t2 + g13t

2
2

g32 + g33t3 + g35t
2
3 g16 + g11t2 + g15t

2
2

∣∣∣∣
A3 =

∣∣∣∣g13 + g14t2 + g13t
2
2 g10 + g11t2 + g12t

2
2

g31 + g34t3 + g31t
2
3 g30 + g33t3 + g36t

2
3

∣∣∣∣
A4 =

∣∣∣∣g16 + g11t2 + g15t
2
2 g10 + g11t2 + g12t

2
2

g32 + g33t3 + g35t
2
3 g30 + g33t3 + g36t

2
3

∣∣∣∣.
After expanding and simplifying equation(30) transforms to:

j0 + j1t2 + j2t
2
2 + j3t

3
2 + j4t

4
2 = 0 (31)

To further eliminate t2 from equations (28) and (31),
equation(28) written as:

k0 + k1t2 + k2t
2
2 = 0 (32)

Finally, elimination method is applied again to (28) and (31)
so that we can eliminate t2:∣∣∣∣∣∣∣
j3k2 − j4k1 j2k2 − j4k0 j1k2 j0k2
j2k2 − j4k0 j2k1 − j3k0 + j1k2 j1k1 + j0k2 j0k1

k2 k1 k0 0
0 k2 k1 k0

∣∣∣∣∣∣∣ = 0

(33)
Expanding equation (33) results in a 16th-order polynomial

with only one variable t3. The solutions of t3 can be obtained
by solving this equation numerically. The solutions of t1
and t2 can be determined by substituting the found solutions
of t3 into equations (28) and (29). Although the number
of the solutions is considerably large, we will show that
only some solutions are feasible and the preferred solution
can be determined by examining the physical constraints of
the mechanism. Passive joint variables can be found from
ϕ1 = 2arctan(t1), ϕ2 = 2arctan(t2), ϕ3 = 2arctan(t3).
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After finding passive joint variables, we can use the equations
(11)–(13)for each dyad to find OMx

,OMy
,OMz

parameters.
Finally, with all the known parameters, we can calculate the
pose parameters psix,psiy , and psiz by using equations (3)–
(5). The forward kinematics solution claimed in this chapter
was proved by implementing it in educational mathematical
computation software. To check both solutions of inverse and
forward kinematics, the same active joint parameters and body
parameters are used in the numerical calculation. The reference
values of active joints are:θ1 = −168.91°, θ2 = −147.99°,
θ3 = −125.6°. As stated before, there exists a maximum
of 16 solutions of the polynomial given. In the numerical
example, it is observed that 10 of the solutions are imaginary,
hence there are 6 real solutions found. And for the values
of t3 = −0.81, t2 = −0.58, t1 = −0.56, we managed to
match with the inverse kinematics solutions(OMz

= 0.25m,
ψx = −10°, ψy = 15°) we have found which is shown in Fig.
4.

Figure 4: Forward Kinematics Result

Our design of mobile parallel manipulators simplified ver-
sion is exported to Matlab Simscape environment. Then,
both solutions of inverse and forward kinematics are inserted
into the parameters of the mobile parallel manipulator. The
Simulink model for this operation is given in Fig. 5. Fig. 3
and Fig. 4 are direct exports of this visualization model from
Simscape.

III. KINEMATICS, CONSTRAINTS & CONTROL OF
MOBILE DIFFERENTIAL DRIVE MANIPULATOR

In this chapter, we will investigate the mechanical con-
straints and kinematics of the mobile platform. Mobile plat-
forms are frequently used for autonomous, guided, or auto-
matic repetitive operations such as warehouse pick and place,
cleaning robots, or humanoid robots with wheels. Having a

mobile platform eliminates the setbacks of parallel manipula-
tors such as workspace and mobility. Thus, we chose to use a
differential drive system which is a simple and effective way of
having a drive system with zero turn radius and only requires 2
motors. Our design has constraints of having 2 wheels with an
axle being located at the center of the body. Then a caster to
be used to balance the car and avoiding topple of whole body.
We will investigate the kinematics of this system and then a
control system for the manipulator with a DC drive motor to
be implemented.

A. Kinematics of Mobile Manipulator
Mathematical modeling is to be generated for the DD drive

mobile manipulator, and the control system is to be based on
a DC motor. The primary function of the study is to give
kinematics for the mobile system and do control simulations
based on these formulations. As a first step, we can see the
position graph of the mobile platform in Fig. 6.

B. Kinematics Modelling
First, we will investigate the mechanical behavior of the

mobile system. The position of a deferentially derived mobile
robot can be described by two coordinate systems, base frame
and mobile platform origin frame. As it can be seen in Fig.
6, the base frame is the global frame which is the reference
fixed coordinate system where the mobile platform travels. The
mobile platform origin frame is the frame in motion at the
center of the mobile platform. The initial location is shown as
XO,YO, and the mobile platform coordinate system is shown
as Xr,Yr. The origin is at the center of the wheel axle which
is located at the center of the platform. These two coordinate
systems can be described by using transformation matrices.

Ẋb = R(θ)Ẋr =

[
cθ −sθ 0
sθ cθ 0
0 0 1

] [
ẋr ẏr θ̇r

]
T (34)

The mobile platform will travel straight if both wheels rotate
at the same rate. If one of the wheels rotates faster than the
other one, turning will happen. The mobile platform will turn
to the left if the right wheel rotates faster and it will turn to
the right if the left wheel rotates faster. If both wheels rotate
in opposite directions at the same speed, the mobile platform
will turn with zero radius at the spot. To formulate the linear
speed(V) of each wheel, we will need the radius of the wheels
which is denoted as rw. We can describe the linear speed with
the relation to each wheel angular speed given as ωr(right),
ωl(left):

Vr = ωrrw, Vl = ωlrw (35)

Then, we can calculate the velocity of the whole mobile
platform by:

Vmp = Vr + Vl =
rw
2
(ωr + ωl) (36)

We can state that
• If the rotation speeds of the wheels are equal and the

rotation directions are opposite, the mobile platform is
stationary and spins in place V=0.
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Figure 5: Simulink-Simscape model of PM

Figure 6: Position of the mobile platform

• If the rotation speeds of the wheels are equal and the
rotation directions are the same, the mobile platform will
travel in a straight line along +xr axis.

• If no lateral slip is assumed, then the linear velocity
along yr axis is zero.

When the right wheel rotates forward and the left wheel rests,
the mobile platform rotates counterclockwise around point O
with a radius of L ω1 = rw

L ωr. When the left wheel rotates
forward and the right wheel rests, the mobile platform rotates
clockwise around point O with a radius of L ω2 = − rw

L ωl.
Which results angular velocity of the mobile platform as:

ωmp = ω1 + ω2 =
rw
2
(ωr − ωl) (37)

We can describe the mobile platform speed in the mobile
platform frame in terms of origin point O.

˙xrO =
rw
2
(ωr + ωl)

˙yrO = 0

θ̇ = ω =
rw
L

(ωr − ωl)

q̇r =

 ˙xrO
˙yrO
ω

 =

 rw
2

rw
2

0 0
rw
2

−rw
2

[
ωr

ωl

] (38)

The mobile platform speed in the base frame is:

˙xbO = V cosθ

˙ybO = V sinθ

θ̇ = ω

(39)

Inserting values of V and ω from equations(36)–(37) and
putting in matrix form:

q̇b =

 ˙xbO
˙ybO
ω

 =

 rwcosθ
2

rwcosθ
2

rwsinθ
2

rwsinθ
2

rw
2

−rw
2

[
ωr

ωl

]
(40)

Equation(40) is the kinematic model of the mobile platform.
The inputs of the controller are Vr and Vl.

C. DC Motor Modelling

In many industrial applications, DC motors are used as
the actuators for mobile robots and smart devices. In our
application, we will use a permanent magnet-brushed DC
motor(PMBDC). Control of the whole system can be based
on control of the DC motor. Electrically, a PMBDC motor can
be modeled with a combination of three electrical parameters
such as resistor(R Ohms), inductor(L mH), and an input of
voltage source(V). Output will be multiplied by the torque
constant(Kt). Mechanically, it can be modeled with a rotating
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body inertia(J kg/m2) and a linear viscous damping compo-
nent(B N/m/s). Then, an error will be inserted to the block
with a negative sum of the back EMF constant(Kb). We will
utilize Laplace transformation to get the transfer function of
the PMBDC motor as illustrated in Fig. 7. The output of the
block will be angular velocity(ω).

Figure 7: DC motor block diagram

We can get the linear velocity(V mp) output by using
equation(36) and output angle θ by multiplying the angular
velocity output with 1

s transformation. The angular velocity of
the mobile platform will be calculated by using equation(37).

D. Control System of Mobile Platform with PID Controller

Proportional-Integral-Derivative(PID) controller is an algo-
rithm that is used to manipulate the angular velocity of
DC motor in a closed loop system, with the constant gains
Kp,KD,KI . Kp is the constant that depends on the difference
between the set point and the present variable which is called
the Error signal. It is the ratio that determines the ratio of
output response. KI is the constant of the integral component
that sums the error signal over time. It will continuously
increase over time unless it converges to zero error. KD is
the constant of the derivative component that tries to get an
ideal response from the control system with an estimation of
future error. This estimation requires a certain filter otherwise
sensitive noises will affect the response of the system. The
constant values can be found by trial and error or some of the
control software such as Matlab offers tuning capabilities. The
table I gives the effect and response of the system.

Constants Rise Time Overshoot Settling Time Steady-state error
Kp Lower Higher Slightly higher Lower
KI Slightly lower Higher Higher Greatly lower
KD Slightly lower Lower Lower Minor effect

Table I: Effects of increasing PID parameters

Modeling block diagram of PID controller given in Fig. 8.

E. Simulink Model for Mobile Platform Actuated by DC Motor
with PID Control System

The Simulink model has been prepared for the DC motor
with PID controller and it is given in Fig. 9. The Feedback
sensor is the encoder mounted to each DC motor which
is the input for the PID controller. The constant values of

Figure 8: PID controller diagram

Kp,KI ,KD is tuned in the Simulink environment to reach
the desired linear velocity.

Then, we can conclude the model of a wheel. This is given
in Fig. 10.

Based on the wheel model, we can design the control model
of the whole mobile platform system in Simulink. This is given
in Fig. 11.

We can also track the position and velocity of the mobile
platform in the X and Y axes. The Simulink model was
adjusted to give these results in a graph, shown in Fig. 12.
In these graphs, we can track the position, angular velocity,
and linear velocity of the mobile platform and wheels, which
can be seen separately for X-Y axes.

F. Test and Simulation Result on Mobile Robot
To test the Simulink model provided, we need the specifi-

cation of the DC motor. The motor used in this application is
a 12V PMBDC with a gear head ratio of n = 3 and encoder
feedback constant Kf = 1.8. The other parameters are shown
in table II.

Parameters Unit Coefficient
kt Nm/A 0.062
kb v/rad/s 0.062
Jm kg/m2 0.0551
bm N m/s 0.188
Ra Ohms 0.56
La mH 0.97

Table II: 12V DC Motor parameters

The desired linear velocity(Vmp) of the mobile platform is
0.333 m/s. The desired angular velocity of the wheels for the
wheel radius of r = 0.05m is:

ωmp =
Vmp

r
=

0.333m/s

0.05m
= 1.6946rad/s (41)

The voltage corresponding to desired ω is V = 12V . Then,
the next step is the tuning of the PID parameters. First, the
test of the simulation model for the mobile platform is done
with Kp = 1,KI = 0,KD = 0 values. The result is found as
0.08473 m/s and the plot is given in Fig. 13.

Then, we tune the PID parameters to get the desired linear
velocity of mobile platform Vmp = 0.333m/s. This is done by

Journal of Intelligent Systems with Applications 2023; 6(2): 10-20 16



Figure 9: Model of DC Motor with PID Controller

Figure 10: Complete Model of One Wheel

using Simulink PID tuning. For the values of Kp = 6,KI =
3,KD = 1.5 we get following result plot in Fig. 14:

We can find the velocity of the mobile platform along the
x and y axes for the case Vl = Vr as shown in Fig. 15. The
Turning radius of the robot is zero.

We can find the position of the mobile platform along the
x and y axes for the case Vl = Vr as shown in Fig. 16.

For the case of velocity, wheels are not equal Vr =
12V, Vl = 3V , we can find the velocity of the mobile platform
along the x and y axes as shown in Fig. 17.

For the case of velocity, wheels are not equal Vr =
12V, Vl = 3V , we can find the position of the mobile platform
along the x and y axes as shown in Fig. 18.

Then finally, we can plot the motion parameters of the
mobile platform concerning initial X and Y coordinate origins.

The linear velocity plot based on origin X-Y parameters for
Vr = 3V, Vl = 12V can be seen in Fig. 19. The position plot
based on origin X-Y parameters for Vr = 3V, Vl = 12V can
be seen in Fig. 20.

IV. CONCLUSION

A hybrid manipulator consists of a mobile platform and a
3-RRS parallel manipulator analyzed in detail. We divided the
kinematics of the whole system into 2 sections which dealt
with the kinematics problem of the 3-RRS parallel manipulator
and the kinematics of the differential drive mobile platform.
We provided a formulation for forward and inverse kinematics
of PM. and we proved it with a numerical case study done
in educational software and the final pose of the PM plotted
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Figure 11: Simulink model of mobile platform system

Figure 12: Complete Simulink model of mobile platform system with options of plotting graphs
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Figure 13: Simulink results of system for Kp = 1,KI =
0,KD = 0

Figure 14: Simulink results of system for Kp = 6,KI =
3,KD = 1.5

Figure 15: Simulink results of velocity along x and y direction

Figure 16: Simulink results of position along x and y direction

Figure 17: Simulink results of velocity along x and y direction

Figure 18: Simulink results of position along x and y direction

Figure 19: Simulink results of velocity based on origin(X-Y)

Figure 20: Simulink results of position based on origin(X-Y)
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in the Matlab Simscape environment. Then, we described the
kinematics formulation of a non-holonomic differential drive
mobile platform. Together with DC motor control theory, we
implemented a PID controller to improve the system response
of the mobile platform. Simulink results are shown in graphs
as shown in Fig. 19 and Fig. 20. Based on these results,
we conclude that the system-based model of differential drive
mobile can be solved and a mobile platform can be combined
with a parallel manipulator to solve industrial or daily life tasks
and improve the abilities of a single robot. The outputs of this
research paper will be used in developing a hybrid mobile
parallel manipulator system.
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