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Abstract—Music has been an integral part of humanity
throughout history. People have conveyed their emotional expres-
sions through music, and musical styles have evolved alongside
communities. Despite the diversity of styles, music has always
existed within an emotional context. Therefore, measuring the
emotional expressions conveyed by music has given rise to a broad
field of study encompassing art, science, history, and sociology.
Additionally, with the proliferation of electronic music platforms,
the ability to automatically identify the emotional genres of music
has become a prominent feature sought after by end users. In
this context, while numerous studies have been conducted in
various languages, there is a scarcity of research specifically
tailored to the Turkish language. For successful execution of
processes that can be automated through machine learning,
several factors need to be considered: the proper selection of
data preprocessing methods, determination of the structure and
complexity of the model to be trained, accurate selection of
training and testing data, and more. Optimal performance cannot
be achieved solely through the correct choice of a model, as flawed
data preprocessing can hinder results, and conversely, accurate
data preprocessing cannot compensate for a faulty model. This
article aims to enhance the performance of a rare music emotion
recognition study conducted in the Turkish language by con-
structing a ''problem-specific network model." To achieve this
goal, data subjected to various normalization techniques were
analyzed using Convolutional Neural Network (CNN) models of
different dimensions and complexities. The achievements were
compared with two different classifiers to establish a reference
point in comparison with previous studies. At the end of the
study, it was observed that for data subjected to MinMax
normalization, a success rate of 86.67% was achieved with the
Softmax classifier and 80% with the SVM classifier. Similarly,
with Z-Score normalization, success rates of 84.17% and 81.67 %
were obtained, respectively. These values are higher than the
highest achievement value of 74.2% obtained for the same data
group in the reference study. Furthermore, it is believed that
applying the additional performance-enhancing procedures used
in the reference study to the models in this study would lead to
even higher achievements.
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Ozetce—Miizik, tarih boyunca insanhgm ayrilmaz bir parcasi
olmustur. Insanlar duygusal ifadelerini miizigin araciigiyla ak-
tarmus ve topluluklarla birlikte miizik tarzlar1 da evrimlesmistir.
Farkh tarzlarda olmalarina ragmen, miizik her zaman duygusal
bir baglamda var olmustur. Bu nedenle, miizigin hangi duygusal
ifadeleri tasidiginin dlciilmesi, sanattan bilime, tarihten sosyolo-
jiye genis bir calisma alam olusturmustur. Ayrica, elektronik
miizik platformlarmin yayginlasmasiyla birlikte, miizigin duy-
gusal tiirlerini otomatik olarak belirleyebilmek, son kullanicilarim
aradig ozellikler arasinda 6ne ¢cikmaktadir. Bu baglamda, farkh
dillerde bu konuda bircok calisma yapilmis olsa da, Tiirkce
diline ozgii cahsmalar oldukca smrhdir. Makine Ggrenmesi
sayesinde otomatiklestirilebilen islemlerin basarih bir sekilde
gerceklestirilebilmesi icin, veri 6n isleme yontemlerinin dogru bir
sekilde secilmesi, egitilecek modelin yapisinin ve karmasikhigimin
belirlenmesi, egitim ve test verilerinin dogru bir sekilde secilmesi
gibi faktorler iizerinde calismak gerekmektedir. Dogru bir model
secimi ile hatali veri on islemesi sonucunda en yiiksek basari
elde edilemeyecegi gibi, tersi durumda dogru veri on islemesi
ile hatali bir model de basarilh sonuclar iiretemeyecektir. Bu
makalede, Tiirkce dilinde yapilan nadir miizik duygu tanmmma
calismalarindan birine yonelik olarak, ''problem 6zgii ag mod-
eli'" olusturarak basarnmin arttirllmasi amaclanmistir. Bu amacg
dogrultusunda, farkl veri normalizasyon yontemlerine tabi tu-
tulmus veriler, farkli boyut ve karmasikhkta Evrisimli Sinir A&
(CNN) modelleri kullanilarak analiz edilmis ve onceki ¢alisma ile
referans olmasi adina iki farklh simflandirici ile olan basarimlar:
incelenmistir. Calismanin sonucunda, MinMax normallestirm-
eye tabi tutulmus veriler icin Softmax simflandiricinin %86,67
ve SVM smiflandiricmin %80 basar1 elde ettigi gozlenmistir.
Benzer sekilde, Z-Skor normallestirme ile elde edilen sonuglar
ise %84,17 ile %81,67 olarak bulunmustur. Bu degerler, refer-
ans calismasinda aym veri grubu icin elde edilen en yiiksek
basar1 degeri olan %74,2’den daha yiiksektir. Ayrica, referans
calismasinda kullanilan diger performans artirici islemlerin bu
calismanin modellerine uygulanmasiyla daha yiiksek basarilar
elde edilebilecegi diisiiniilmektedir.

Anahtar Kelimeler—CNN; model secimi; hiperparametre; nor-
mallegtirme
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I. INTRODUCTION

The history of written music dates back to even before the
19th century, reaching as far as mythological legends. While
there isn’t a unanimous consensus on the identity of the first
musical instrument, a more intriguing question arises: why did
humanity develop musical instruments? All creatures express
their emotions through actions, except for humans. Humans,
on the other hand, can convey their emotions through rhythm,
or in other words, through music. Thus, music has retained its
significance for humanity as a means of expressing emotions
from ancient times to the present [1].

As humanity conveyed emotions through music, music
evolved, giving rise to various region-specific and culturally
unique music genres. However, regardless of the genre, music
has always possessed an underlying emotional foundation. In
today’s world, where music is easily accessible, the need arises
to categorize it based on its genres, the emotions it evokes,
and similar characteristics. With the proliferation of digital
music platforms, algorithms capable of distinguishing between
different emotional qualities of music have become popular.

Even in contemporary times, recognizing emotions from
music remains challenging. This is due to the fact that
emotions can vary from person to person [2]. Therefore,
databases for classifying music emotions with the participation
of numerous individuals are being created [3]-[6]. However,
access to most of these databases is limited. Furthermore, due
to the presence of language- or region-specific nuances in
music databases, achieving a universal classification of music
emotions is challenging. Moreover, many studies in this field
tend to be predominantly focused on the English language [7],
[8]. Open libraries for regional studies are also quite limited.
Addressing the deficiency in a Turkish music emotion labeling
database, a valuable dataset for the Turkish language, Er and
Aydilek’s work provides researchers with an essential resource
[9].

The initial step with the dataset involves determining the
features. If not performed using machine learning techniques
[10]-[15], feature selection is a critical process. Various types
of features are utilized for detecting emotions in music, catego-
rized into groups like energy, rhythm, temporal, spectrum, and
harmony [16]. While the range of emotional states conveyed
through music can be further segmented, they are generally
conceptualized and modeled using the 2D Arousal-Valence
emotion plane, commonly referred to as Thayer’s Model or
Russell’s Model [17], [18]. The categories addressed in this
study are the four labels, "angry," "sad," "happy," and "relax,"
highlighted in bold on Figure X.

Following the determination of target labels and utilizing
feedback from participants, a dataset is created. This dataset
is then processed for the selected features. To this end, various
tools are employed in the literature, with one of the most
popular being the MIRToolbox in MATLAB [19]. This toolbox
facilitates the extraction of features such as RMS energy,
Chromagram, Mel-Frequency Cepstral Coefficients (MFCCs),
and Spectrum information from music.

Subsequently, classification or regression processes are mod-
eled using the chosen feature set. The compatibility and
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Figure 1: The 2D valence-arousal emotion space

complexity of the selected model and feature set play a pivotal
role in determining the system’s performance. In the literature,
a variety of machine learning methods are employed for classi-
fication tasks. For instance, Feng et al. [20] employed a 3-layer
ANN, while Song et al. [21] used SVM to categorize a dataset
of 2904 songs collected by Last FM [4] into 4 categories.
Liu et al. [13] utilized CNN for both feature extraction and
classification tasks.

In this study, the feature set presented by Er and Aydilek
[9] was employed [22]. The primary focus of this work was
on examining the impact of hyperparameter optimization for
the selected classifier model on the outcomes.

II. MATERIALS & METHODS
A. Dataset

In this study, the feature set created by Er and Aydilek has
been utilized. The feature set contains attributes from 400 mu-
sic tracks, each lasting for 30 seconds, present in the Turkish
Music Emotion Recognition database also developed by Er and
Aydilek [22]. These attributes encompass a total of 50 distinct
measurements, falling within the general categories of energy,
MFCCs, Attack Time, Spectral, Chromagram, and Harmonic.
For each sound file, the chosen 50 attributes constitute a total
of 400 instances, with 100 samples per category. The values
within the dataset have not undergone normalization. In this
study, to observe the impact of normalization on performance,
both raw attributes and normalized attributes using MinMax
and Z-score techniques were employed.

The generated feature sets were divided into 70% training
and 30% testing data, ensuring an equal distribution within
each class. The resulting training set underwent 5-fold Cross-
Validation to be applied to the trained model. Performance
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results were computed using the test data that had not been
incorporated into network training or validation.

Given the inability to generate similar data for comparison
with the reference study, recommended data augmentation
techniques were not employed in this work. Additionally, to
establish similarity with the reference study, Softmax and SVM
classifiers were used at the output of the CNN model.

The proposed methodology involves determining parame-
ters of the CNN model, such as its depth, complexity, and
filter size, through hyperparameter tuning to ensure problem-
specific suitability. To achieve this, the Python library named
"hyperopt" has been utilized [23]. This approach aims to
optimize the architecture of the network in order to align
with the intricacies of the given problem. The "hyperopt"
library facilitates a methodical exploration of various combi-
nations of hyperparameters, enabling the identification of an
optimal configuration that enhances both the performance and
generalization capabilities of the model. By customizing the
parameters of the CNN to the specific characteristics of the
task at hand, this methodology seeks to achieve superior results
in terms of accuracy, efficiency, and overall effectiveness.

B. Convolutional Neural Network

The process of convolution involves traversing one matrix
over another matrix, calculating the sum of element-wise
multiplications at overlapping positions. As observed in Figure
2, when convolution is applied to the two matrices, for each
element of the resulting matrix Y, matrix W is slid over matrix
X as depicted in equations 1 and 2. To prevent dimension
reduction, padding can be applied by adding rows and columns
to the outer edges of matrix X, thereby increasing the size of
matrix Y, if desired. In fields such as image processing, dealing
with large matrices, the reduction of output matrix dimensions
is often sought. However, in cases where relatively small-sized
data is used, as in this study, padding is commonly employed
to prevent excessive reduction in matrix dimensions. In this
study, we conducted operations with padding to ensure that
the matrix dimensions remained unchanged.
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Figure 2: A convolution process example
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C. Classification Layer

The CNN model can have a classification layer at its
output, or its raw outputs can be passed as feature inputs to
another classifier. In this study, in order to compare with the
reference work, we obtained results using both an artificial
neural network model with a Softmax activation function and
an SVM classifier.

Support Vector Machine, also known as Support Vector
Networks, is a machine learning method that aims to find
the best decision boundary between classes. To achieve this,
input vectors need to be transformed using kernel functions
that employ nonlinear mapping to a high-dimensional feature
space. In this feature space, a linear decision surface can be
created to perform classification [24].

For data that cannot be linearly classified, different kernel
functions can be used. Polynomial and radial basis functions
(RBF) are frequently employed in such processes. The margin
boundary represents the distance of the decision boundary set
by the SVM to the nearest features. When the decision surface
cannot correctly classify all components, some components
are allowed to be on the wrong side of the decision surface.
This gives rise to a new margin boundary known as the Soft
Margin when compared to the rigid margin boundary. Figure
3 illustrates an example SVM decision boundary.
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Figure 3: An example of SVM with two features
III. RESULTS & DISCUSSION
A. Results

In this study, a total of six different model performances
were investigated using two distinct classifiers and three dif-
ferent sets of normalized attributes. Each model was hyperop-
timized for the data applied to its input and the classifier layer
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at its output. During the model training, the attribute sets were
divided into 70% training and 30% test data, and the training
data were folded using 5-fold cross-validation. For each model,
a randomly selected 4-layered CNN model was utilized as a
starting point in the hyperparameter space. The models were
trained using the "hyperopt” Python library, and the models
that achieved the highest accuracy values in the complexity
matrix obtained with the test data were saved.

Following the training and optimization processes, the net-
work model parameters were summarized in Table I based on
the utilized classifier and normalization method. The number
of filters and kernel size of the four 1D convolution layers,
as well as the size of the pooling layer after the convolution
layers, are shown in the first nine columns. The empty spaces
in the pooling layer column indicate that the pooling process
was not selected for that particular model. The last two
columns of the table show the number of neurons in the neural
network layers.

Complexity matrices for the tested networks after hyper-
parameter optimization are presented in Figures 4 and 5
for Softmax and SVM classifiers, respectively. These figures
demonstrate that data normalization and the choice of normal-
ization method significantly influence classifier performance.

In Table II, the accuracy achievements of our study are
presented alongside the accuracy achieved by the reference
article for the same dataset. Our study reached an accuracy of
81.7% for the SVM classifier, indicating a 3.1% improvement,
and an accuracy of 86.7% for the Softmax classifier, showing
a substantial increase of 10.7%.

B. Discussion

In this study, a hyperparameter-optimized CNN network
is compared with pre-trained deep learning models’ perfor-
mances on a sample dataset. For this purpose, the work
of Er and Aydilek [9], which shares an attribute set and
a Turkish music emotion recognition database prepared for
music emotion recognition, is taken as a reference.

The reference article demonstrates excellent performance
using pre-trained models such as AlexNet and VGG-16 in
image processing methods. As emphasized in the study, the
advantages of selecting pre-trained models and the potential for
improvements in various parameters should be acknowledged.
Additionally, it is observed that the suggested hyperparameter
optimizations we propose contribute to performance enhance-
ment. For future work, apart from the improvements on raw
data suggested by Er and Aydilek [9], investigating perfor-
mance improvements with different classifier layers could be
considered.
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Hyperparameters

Classifi N
assiher orm Conv 1 Conv 2 Conv 3 Conv 4 Pool Dense 1 Dense 2
Kernel Filters Kernel Filters Kernel Filters Kernel Filters Size Units Units
Softmax No Norm. 2 24 2 10 2 28 2 28 - 96 96
Softmax MinMax 2 24 2 26 2 10 2 34 2 64 96
Softmax Z_score 2 27 2 22 2 46 2 52 - 448 32
SVM No Norm. 2 30 2 18 2 34 2 22 2 512 32
SVM MinMax 2 24 2 14 2 34 2 16 2 384 128
SVM Z_score 2 30 2 10 2 22 2 34 - 512 96

Table I: CNN Model parameters after hyperparameters optimization
Confusion Matrix without Normalization Confusion Matrix with MinMax Normalization Confusion Matrix with ZScore Normalization
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Figure 4: Confusion Matrices for Softmax Classifier
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Confusion Matrix without Normalization Confusion Matrix with MinMax Normalization Confusion Matrix with ZScore Normalization
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Figure 5: Confusion Matrices for SVM Classifier

Model Layer Normalization Classifier ~ Train-Test Ratio  Accuracy
Hypertuned CNN - No Norm. SVM 70%-30% 62.5
Hypertuned CNN - MinMax Norm. SVM 70%-30% 80
Hypertuned CNN - Z_score Norm. SVM 70%-30% 81.7
Hypertuned CNN - No Norm. Softmax 70%-30% 60
Hypertuned CNN - MinMax Norm.  Softmax 70%-30% 86.7
Hypertuned CNN - Z_score Norm. Softmax 70%-30% 842
AlexNet Conv5 - SVM 70%-30% 583
AlexNet Conv5 - Softmax 70%-30% 57.5
AlexNet Fc6 - SVM 70%-30% 74.0
AlexNet Fc6 - Softmax 70%-30% 74.2
AlexNet Fc7 - SVM 70%-30% 72.5
AlexNet Fc7 - Softmax 70%-30% 733
AlexNet Fc8 - SVM 70%-30% 68.8
AlexNet Fc8 - Softmax 70%-30% 70.8
VGG-16 Conv5_3 - SVM 70%-30% 61.6
VGG-16 Conv5_3 - Softmax 70%-30% 58.3
VGG-16 Fc6 - SVM 70%-30% 78.6
VGG-16 Fc6 - Softmax 70%-30% 76.0
VGG-16 Fc7 - SVM 70%-30% 732
VGG-16 Fc7 - Softmax 70%-30% 733
VGG-16 Fc8 - SVM 70%-30% 70.0
VGG-16 Fc8 - Softmax 70%-30% 72.5

Table II: The classification results of both this and the reference work





