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Abstract—The lithium-ion battery technology has led to sig-
nificant changes in the usage of rechargeable batteries due
to its low discharge current, high energy capacity, and long
charge/discharge cycles. The easy production of portable and
high-energy density batteries has not only contributed to the
proliferation of smart devices like the Internet of Things (IoT)
devices but has also led to an increase in the use of electric vehicles
(EVs). As battery chemistry varies based on manufacturers and
storage conditions, the importance of determining the charge
lifespan and capacity of batteries connected to smart devices
is growing progressively. Therefore, various studies are being
conducted to assess capacity and lifespan calculations for Li-Ion
batteries. In this study, the behavioral patterns of Li-Ion cells in
end-user products are analyzed, aiming to predict capacities for
similar battery groups. For this purpose, besides a fundamental
linear regression analysis, regression analysis using Gaussian
Process Regression (GPR) and Convolutional Neural Networks
(CNN) is carried out. The regression performance is evaluated
using diverse metric criteria such as R-squared (R2), Adjusted
R-squared (Adj. R2), Mean Absolute Percentage Error (MAPE),
Root Mean Squared Error (RMSE), and Normalized Mean
Squared Error (NMSE).
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Özetçe—Lityum-iyon pil teknolojisi, düşük deşarj akımı, yoğun
enerji kapasitesi ve uzun şarj/deşarj dongüsü sebebiyle şarj
edilebilir pillerin kullanım alanlarında büyük değişimler yaşan-
masına sebep olmuştur. Taşınabilir ve enerji güvenliği yük-
sek bataryaların kolayca üretilmesi ile IoT gibi akıllı aygıt-
ların yaygınlaşmasının yanısıra elektrikli araçların(EV) kullanıl-
masında da artış meydana gelmiştir. Pil kimyasının üretici temelli
ve saklama koşulları ile değişmesi sebebiyle akıllı cihazlara
bağlı pillerin şarj omrünün ve kapasitesinin tespitinin onemi
gitgide artmaktadır. Bu sebeple Li-Ion pillerde de kapasite ve
omür hesabında çeşitli çalışmalar yapılmaktadır. Bu çalışmada
ozellikle Li-Ion hücrelerin son kullanıcı ürünlerindeki davranış
modelleri incelenerek benzer batarya grupları için kapasite
tahmini yapılması amaçlanmıştır. Bu sebeple temel bir doğrusal
regresyon analizinin yanı sıra Gaussian Process Regression (GPR)
ve Convolutional Neural Networks (CNN) ile regresyon analizi
gerçekleştirilmiştir. Çeşitli metrik olçütlerle, (R-squared (R2),

Adjusted R-squared (Adj. R2), Mean Absolute Percentage Error
(MAPE), Root Mean Squared Error (RMSE), and Normalized
Mean Squared Error (NMSE)), regresyon performansı incelen-
miştir.

Anahtar Kelimeler—Lityum-iyon batarya; kapasite; regresyon;
GPR; CNN

I. INTRODUCTION

Lithium-ion batteries, owing to their high energy density and
compatibility with rapid charging methods, have revolutionized
the landscape of rechargeable batteries. They find extensive
applications across a wide spectrum, ranging from unmanned
aerial vehicles (UAVs), cell phones, and electric vehicles to
everyday consumer products like toothbrushes and electric
shavers. Additionally, they are employed in smart home sen-
sors and Internet of Things (IoT) devices. For projects with
energy-sensitive requirements such as IoT devices, cell phones,
and UAVs, there has been significant research on predicting
the capacity degradation over time, estimating instantaneous
current outputs, and predicting voltage behavior.

The ability to forecast these parameters enables the de-
termination of network connection timing for service and
charging intervals of mobile devices. Battery management is
notably crucial in unmanned aerial vehicles and IoT devices,
as mismanaging batteries can lead to severe consequences,
including complete device failure. Accordingly, the literature
is replete with studies on this matter. For instance, Li et al.
examined battery depletion patterns in UAVs engaged in rescue
missions under extreme weather conditions [1]. Depcik et al.
highlighted the advantages of Li-ion batteries in UAV flight
duration compared to alternative energy storage methods [2].
Ma et al. investigated optimizations necessary for using Li-
ion batteries in UAVs [3]. Shahjalal et al. delved into heat
management issues during charge and discharge in Li-ion
batteries [4]. Kumar et al. worked on battery life prediction
for IoT devices [5], while Hemavathi focused on predicting
battery life using internal impedance [6]. Likewise, Shah et al.
concentrated on estimating the lifespan of EV batteries [7]. Li
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et al. employed GPR and later Support Vector Regression for
capacity analysis in Li-ion batteries [8], [9].

In predicting the State of Health (SOH) of batteries, several
electrically measurable parameters are considered. Battery
internal resistance measurements have been used to estimate
battery capacity directly [10]–[13]. Similarly, IC/DV capacity
growth-voltage change analysis is also employed for battery
life prediction [14]–[17]. Another method, the Differential
Temperature Voltage (DTV) analysis, utilizes potential differ-
ence and surface temperature change for SOH estimation [18]–
[20].

In this study, the NASA Prognostics Center of Excellence
(PCoE) battery discharge dataset was employed [21].

Looking at similar studies conducted with comparable
datasets, analyses of SOH have been carried out using meth-
ods like the Autoregressive process [22], a combination of
Gaussian Process Regression (GPR) and Fuzzy Logic [23], Ca-
pacity estimation through Lumped Parameter Modeling [24],
Capacity prediction using Polynomial Fitting [25], Capacity
estimation employing Nonlinear AR model [26], Prediction
through Kalman filtering [27], Battery life prediction using
Support Vector Regression (SVR) [28], [29], and also Nonlin-
ear Regression techniques [30].

For SOH analysis from battery discharge data, linear regres-
sion, GPR, and CNN-based regression analyses were utilized
to predict the battery output voltage in terms of measured load
current, load potential, and battery voltage’s previous recorded
value.

II. MATERIALS & METHODS

A. Dataset & Preprocess
In this study, the battery charge/discharge dataset provided

by the NASA Prognostics Center of Excellence (PCoE)
has been utilized [21]. The presented dataset encompasses
temperature, terminal current, voltage, as well as circuit
current and voltage (load or charge circuit) during the
charge/discharge events of Li-ion batteries. Additionally,
the dataset includes measurements necessary for internal
resistance calculations during impedance measurements. A
detailed representation is presented in the image below, and for
comprehensive examination, the entire dataset can be accessed
at https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-
data-repository/.

The data structure for battery B0005 is provided as an illus-
trative example in the image. Beneath the top-level field named
"cycle," there are fields labeled "type," "ambient_temperature,"
"time," and "data." The "type" section contains subfields
for "charge," "discharge," or "impedance." The "time" field
accommodates the starting time of the "cycle" operation. The
"data" section holds the recorded data. In this study, discharge
patterns from batteries B0005, B0006, B0007, and B0018 have
been employed.

For the utilized discharge data, only MinMax normalization
has been applied as a preprocessing step. Through MinMax
normalization, the measured quantities have been scaled to the
range of 0 to 1, as indicated by the equation 1.

xnormalized =
x− xmin

xmax − xmin
(1)

Where:
- xnormalized represents the normalized value of the measure-

ment x,
- xmin is the minimum value of measurement x,
- xmax is the maximum value of measurement x.
This normalization process ensures that the measured values

are transformed to a standardized range suitable for subsequent
analysis and modeling. Three attributes have been chosen as
features for the regression. These include the load current,
voltage values, and the terminal potential value recorded in the
previous measurement of the battery. The goal is to predict the
instantaneous voltage value of the battery as the output.

B. Regression
Supervised learning can be fundamentally categorized into

regression and classification problems. If we are building a
learning model to predict discontinuous or labeled intervals, we
are dealing with a classification problem [31], [32]. Similarly,
when the values we are aiming to predict are continuous, this
process is referred to as a regression problem. In the context
of this study, focusing on battery capacity, the prediction task
at hand is a regression process that needs to be addressed [33].

1) Linear Regression: Linear Regression analysis is the
approach of investigating the relationship between multiple
variables using linear methods. In its simplest form, the linear
regression model can be defined as [34]:

y = β0 + β1x+ ε (2)

Here, y represents the dependent variable, while x is the
independent variable. β0 denotes the intercept, β1 signifies the
slope of the line, and ε indicates the error term.

2) Gaussian Process Regression: Gaussian Process Regres-
sion (GPR) is a non-parametric Bayesian regression method.
Broadly, it is a modeling process performed to find a Gaussian-
distributed kernel that maps our input feature vector to the
output values. If we express it in the form of a standard linear
model,

y = f(X) + ε (3)
f(X) = XTw (4)
ε ∼ N (0, σ2

n) (5)

Where noise (ε) follows a Gaussian distribution with a mean
of zero and a variance of σ2

n [33].
3) Convolutional Neural Network: The regression problem,

as mentioned before, is the process of approximating a contin-
uous output in terms of attributes through specific parameters
and functions. On the other hand, CNN is a multi-layered
perceptual system that includes at least one layer with a
convolution operation and can be utilized for both classification
and regression tasks [35], [36]. The cornerstone of CNN, the
convolutional layer, is where the convolution operation takes
place. These layers are typically responsible for determining
data attributes. The convolutional layer allows focusing on
crucial points rather than processing the entire dataset, en-
abling the creation of a more profound learning algorithm [37].
By leveraging the learned weight coefficients specific to the
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Figure 1: Data structure for battery B0005

convolutional network, the input data undergoes convolution
to compute the output. For instance, the convolution operation
Y = X ∗ W is illustrated in Figure 2, and the calculation
of the y0 value from the outputs is presented in Equation 6.
Similarly, other values within the Y matrix are computed by
sliding the W matrix over the X matrix. Ultimately, Equation
7 is derived for the convolution operation.

Figure 2: A convolution process example

y0 = x0w0 + x1w1 + x3w2 + x4w3 (6)

y(n) = x(n) · w(n) =
n∑

k=0

w(k)x(n− k) (7)

The convolutional layer can be utilized for classification or
regression tasks based on the type of activation layer used in
its output. In this study, a linear function has been employed.

C. Metrics & CV
In the performance measurement of regression analysis,

the correlation coefficient R2 is commonly employed [38].
Additionally, in the literature, metrics such as adjusted R2 ,
Mean Absolute Percentage Error (MAPE), Root Mean Squared
Error (RMSE), and Normalized Mean Squared Error (NMSE)
are often selected as supplementary indicators alongside the
correlation coefficient [39]–[41]. The formulas for the metrics
used here are provided below:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(8)

Adj. R2 = 1− (1−R2) · (n− 1)

n− p− 1
(9)

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (10)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (11)

NMSE =
1

n

n∑
i=1

(yi − ŷi)
2

(yi − ȳ)2
(12)

Where:
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- n is the number of data points,
- p is the number of predictors,
- yi represents the observed value,
- ŷi represents the predicted value,
- ȳ is the mean of observed values.
The preprocessed dataset, after undergoing normalization,

has had 30% of its data set aside as test data before applying
regression analysis. A 10-fold Cross-Validation (CV) process
has been conducted on the remaining 70% of the data. Perfor-
mance values have been calculated using the remaining 30%
test data for metric measurements.

III. RESULTS & DISCUSSION

A. Results
In this study, three different regression analysis methods

have been employed. These are linear regression, GP regres-
sion, and CNN regression methods. The generated models
were trained and validated using 70% of the data reserved for
training, employing the 10-fold cross-validation technique, re-
peated 10 times. Subsequently, these models were tested using
the previously set aside 30% test data, and their performance
was measured using five different metrics. As shown in Table
1, battery voltage exhibits a strong dependence on the selected
features.

Figure 3: Linear regression

The response of the first model, the Linear Regression
model, for the test data can be observed in Figure 3. Re-
markably accurate predictions are obtained for battery voltage
values of 50% or more of the maximum value. Similarly, for
Figure 4, GPR yields results similar to the Linear Regression
model, yet with superior performance. Finally, in the investi-
gation involving the CNN model, the distribution depicted in

Figure 4: Gaussian process regression

Figure 5 is attained. Slightly more successful outcomes are
achieved compared to the previous models. In Figure 6, the
predicted battery voltages for the test values by all models are
collectively plotted. It can be observed that the CNN model’s
performance is marginally better.

Figure 5: CNN regression
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Figure 6: All regression results

Model R2 Adj.R2 RMSE NMSE MAPE
Linear Reg. 0.980569 0.980568 0.013996 0.074926 0.008070

Gaussian Proc. Reg. 0.984854 0.984853 0.012357 0.097037 0.007583
CNN Reg. 0.986838 0.986837 0.011519 0.090538 0.006785

Table I: Model Performances

B. Discussion

An R2 value of over 98% has been achieved for all three
selected regression models. To attain even higher performance
values, adjustments can be made to the models’ hyperparam-
eters, such as increasing the number of neurons in the CNN
model. For future studies, it is considered beneficial to explore
adjustments of hyperparameters specific to the models, as well
as experimenting with other machine learning methods.
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