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Özetçe—Sismokardiyogram (SKG), göğüs kafesinde 

oluşan kalp atışı kaynaklı titreşimleri kaydedip 

değerlendirmek için kullanılan düşük maliyetli bir izleme 

yöntemidir. Genellikle yardımcı izleme yönetimi olarak 

kullanılmasına rağmen, kişinin kardiyovasküler sağlık 

durumuna dair önemli bilgiler içerir. Eğer bu bilgiler klinik-

dışı ortamda doğru şekilde toplanabilirse, sağlık 

profesyonellerine klinik öncesi ön bilgi sağlanabilir. Fakat 

SKG sinyalleri doğası gereği gürültülüdür. Bu sebeple, 

sinyallerin içinden kalp atışına dair anlamlı bilgiyi ayıklamak 

büyük önem arz eder. Daha önce bu amaçla uygulanan ve 

Nyquist oranının altında kalan tıbbi teşhise uygun sinyalleri 

ayıklayan yöntemle, sinyal kalitesini bozmadan 3’te 1 

oranında veri sıkıştırması mümkün hale getirilmiştir. Daha 

yüksek oranlara çıkıldıkça yeniden inşa edilen sinyallerde ise 

bozulma gözlenmiştir. Bu problemi gidermek amacıyla, daha 

düşük veri kaybıyla daha yüksek sıkıştırma oranı sağlayan bir 

yönteme gereklilik duyulmaktadır. Bu çalışmanın amacı, 

daha önce elektrokardiyogram (EKG) ve ses sinyallerine 

başarıyla uygulanan temel tanım ve zarf vektörleri yöntemiyle 

daha iyi sonuçlar elde etmektir. Bu çalışmada tıbbi teşhise 

uygun biyo-sinyaller elde etmek amacıyla, EKG ve SKG 

sinyalleri temel tanım ve zarf vektörleriyle modellenmiştir. 

Yeniden inşa edilen sinyaller, orijinal sinyallerle 

kıyaslanmıştır. Yeniden inşa edilen sinyallerin, çerçeve 

ölçekleme katsayısı, temel tanım ve zarf vektörleri olarak 

adlandırılan bileşenlerinin global hata fonksiyonu 

değerlerinin beklenenden farklı çıktığı görülmüştür. 

Modelleme sonucunda maalesef tıbbi teşhise uygun SKG 

sinyalleri elde edilememiştir. 

Anahtar Kelimeler—Elektrokardiyogram (EKG); 

sismokardiyogram (SKG); temel tanım ve zarf vektörleri; biyo-

sinyal işleme. 

Abstract—Seismocardiogram (SCG) is a low-cost 

monitoring method to collect precordial vibrations of sternum 

due to heartbeats and evaluate cardiac activity. It is mostly 

used as an auxiliary measurement to the other monitoring 

methods; however, it carries significant patterns reflecting 

current cardiovascular health status of subjects. If it is 

properly collected within a non-clinical environment, it might 

be able to present preliminary data to physicians before clinic. 

SCG signals are morphologically noisy. These signals store 

excessive amount of data. Extracting significant information 

corresponding to heartbeat complexes is so important. 

Previously, the method called compressed sensing (CS) had 

been applied to weed up the redundant information by taking 

the advantage of sparsity feature in a study. This compressed 

sensing is based on storing significant signals below the 

Nyquist rate which suffice for medical diagnosis. It has been 

feasible to compress SCG signals with 3:1 compression rate at 

least while maintaining accurate signal reconstruction. 

Nevertheless, higher compression rates lead to the formation 

of artifacts on reconstructed signals. This limits a more 

aggressive compression to reduce the amount of data. The 

requirement of a different approach which will allow higher 

compression rates and lower loss of information arises. The 

purpose of this study is to obtain more competent results by 

using a method called predefined signature and envelope 

vector sets (PSEVS) which has been satisfyingly applied to 

electrocardiogram (ECG) and speech signals. In the study, 

simultaneously recorded ECG and SCG signals were modeled 

with the method called PSEVS. The reconstructed signals 

were compared to the original signals so as to investigate the 

efficacy of signature-based modeling methods in constructing 

medically remarkable biosignals for clinical use. After 

examining the components of reconstructed signals called 

frame-scaling coefficient, signature and envelope vectors, it 

has been seen that the error function values of envelope 

vectors differ from expected values. We concluded that 

reconstructed SCG signals were not adequate for medical 

diagnosis. 

Keywords—Electrocardiogram (ECG); seismocardiogram 

(SCG); predefined signature and envelope sets; bio-signal 

processing. 

I. INTRODUCTION

Over the last two decades, cardiovascular diseases have 
still been the number one of top 10 causes of death 
accounting for 15.2 million deaths only in 2016 according 

Akıllı Sistemler ve Uygulamaları Dergisi, Cilt: 3, Sayı: 2, Sayfa 77-83, 2020 77



to Global Health Estimates [1]. These statistics highlight the 
importance of monitoring vital signs and advancing health 
assessment technologies. When it comes to early diagnosing 
and preventing potential human coronary system problems, 
long-term monitoring has been drastically gaining 
popularity within non-clinical environments in recent years. 
Non-invasive and unobtrusive sensing techniques present 
simple and affordable solutions to healthcare professionals 
in providing preclinical data [2]. 

Seismocardiography and ballistocardiography have 
been re-established to detect and evaluate seismic activities 
of human heart due to their low-cost installations to operate 
[3]. A seismocardiogram (SCG) delineates the record of 
vibrations collected from precordium [4]. A 
ballistocardiogram (BCG) shows an estimation of ballistic 
forces caused by the blood movement from left ventricle of 
the heart to the aorta [5]. 

Although electrocardiogram (ECG) has clinically been 
the most reliable measurement for over a half-century owing 
to its highly accurate results regarding coronary health 
status, electrocardiography often needs a clinician to apply 
the measurement procedures and electrodes to be 
methodically located on skin which restrain any self-use 
outside of the clinic [6]. Seismocardiogram and 
ballistocardiogram can easily be recorded by any 
smartphone accelerometer sensor in daily life today [7]. 
However, these signals are exceedingly sensitive to 
peripheral distortions such as body movements, cardiac and 
respiratory sounds, even an improper posture of the body 
and this is currently the biggest challenge which should 
essentially be overcome [2], [5], [8]. No sufficient number 
of studies have been fulfilled to give a clinical significance 
to cardiomechanical signals yet, so SCG and BCG still 
could not find any use for diagnostic purposes alone. 

As in other long-term monitoring methods, SCG 
produces a huge amount of data which could hardly be 
archived. SCG theoretically contains more than ten peak 
points with typical systolic and diastolic parts in a single 
cardiac cycle [4]. It is vital to diminish excessive 
information before making any assessment. Moreover, SCG 
signals are morphologically noisy since it is not possible to 
completely isolate from the other mechanical signal sources 
while acquiring the data as previously stated. Most of the 
current studies and measurements are conducted at-rest 
position of subjects. Consequently, it is important to remove 
redundant data and effectively compress these signals 
without losing any relevant information corresponding to 
heartbeat complexes [9].  

A method which is called compressed sensing (CS) was 
introduced to refine this relevant information by means of 
sparsity feature of an input signal [10]. This method covers 
preserving the most informative part of the signals below the 
Nyquist rate by allocating the input signal into a 
measurement matrix to adjust the compression ratio. It is 
founded on regaining the original signal from the 
compressed one. The method showed that it is possible to 
compress SCG signals with 3:1 compression ratio while 
maintaining quality of the original signals. However, the 

reconstructed signals are prone to form artifacts when the 
compression ratio is much increased. This tendency of 
disruption brings limitations in reducing the amount of input 
data. A different modeling method which provides higher 
compression and lower loss may struggle these limitations. 
It was considered that the method called using predefined 
signature and envelope sets (PSEVS) which had been 
successively applied to speech and ECG signals might offer 
more promising results [11], [12]. 

In this study, simultaneously recorded ECG and SCG 
signals were modeled with the PSEVS method after 
preprocessing. The reconstructed signals were compared to 
the original ones. In following sections, firstly, signature-
based modeling methods and the PSEVS method are 
introduced. Secondly, the dataset, algorithms and 
preprocessing stage of the signals are described. Finally, the 
results of the study are discussed. 

II. MATERIALS & METHODS 

A. Overview of Signature-based Modeling Methods 

Signature-based methods could not gain a solid place in 
signal processing until the early-90s after Gabor’s time-
frequency analysis had firstly been published in 1946 [13]. 
These methods are founded on extracting unique and 
significant information from signal patterns [14]. Signature 
analysis is applied to various fields such as vibrations of 
mechanical systems, data and text retrieval, voice 
recognition, image and video processing, information 
security [15]-[19]. In signature-based methods, information 
can be compressed very effectively since they aim to capture 
the highest energy components of signals [20]. 

B. Predefined Signature and Envelope Vector Sets 

(PSEVS) Method 

In this study, the PSEVS method which had been 
proposed in [12] was used for modeling. This model aims to 
form the signature and envelope vector sets satisfactorily 
reflecting the nature of bio-signals and reconstruct these 
signals by using the vector sets. The method is based on 
comparing the similarities of signals and keeping the least 
amount of information to recover [21]. 

For a signal x(n) sampled within a discrete time domain, 
the main statement is: 

Xi = CiKR (1) 

where Xi is the frame matrix with the frame number i, also 

K  {1, 2, …, NE}, R  {1, 2, …, NS}; NE, NS are integers. 

Ci is a real constant, R is a row vector, and K is a LF  LF 

diagonal matrix. The vector CiR holds the highest energy 
component of the frame matrix in approach of the least mean 

squares. The diagonal matrix K represents the envelope, 
that is, the shape of the original signal with the length of 
frames LF. 
 According to the main statement, the definitions below 
can be suggested: 
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1) The vector R is named as the predefined signature 
vector (PSV) 

2) The diagonal matrix K is named as the predefined 
envelope vector (PEV) 

3) The constant Ci is named as the frame-scaling 
coefficient (FSC) 

C. Dataset 

 In the study, ECG and SCG signals called lower-body 
negative pressure (LBNP) dataset which had been 
synchronously collected from 18 healthy subjects by 
Tavakolian et al. [22] were used. Each subject was fastened 
from the apex of ilium by placing the lower body into a 
negative pressure chamber. Measurements were firstly done 
at-rest without applying any pressure. And then, the 
negative pressure values were progressively decreased to -
20, -30, -40 and -50 mmHg. The signals were sampled at 
1000 Hz. All measurements were performed at Simon 
Fraser University (SFU) Aerospace Physiology Lab under 
the authorization of SFU Research Ethics Board [22]. This 
dataset was shared on PhysioNet Community website for 
public use by the research team. Anthropometric measures 
of the dataset are given at Table I. The means of height – 
body mass – age of the subjects are 174,3 cm – 71,2 Kg – 
27,6-year respectively. The standard deviations of these 
values are also 7,0 cm – 11,9 Kg – 3,7-year. 
 Additionally, Table II displays individual measurement 
intervals and total measurement times including resting and 
post-pressure periods for each subject. Note that the 
measurement unit is in minutes. Miscellaneous hardware 
and physiological problems occurred in the measurement of 
subjects marked with “*”. Therefore, these subjects’ data 
were not included in this analysis since they might have 
ruined the homogeneity of research. 

D. Data Pre-processing 

Primarily, 30-sec parts in between 1st and 2nd minutes 

which are relatively less noisy than the other parts were 

subtracted from 30-min long signals to diminish the 

potential workload. Afterward, high-frequency noise and 

baseline trends caused by power source were removed. 

While removing baseline shifts, 6th order polynomial 

functions were fitted to the signals for nonlinear trends in 

MATLAB. And also, the wavelet transform was applied 

to each signal by using MATLAB Signal Denoiser App 

for filtering high-frequency noise. Biorthogonal 3.7 

wavelet with universal threshold method up to level 8 was 

employed for ECG signals. For SCG signals, biorthogonal 

3.3 wavelet with minimax method up to level 6 was 

employed because of their oversensitive nature to 

disturbances. 

E. Algorithms for Vector Sets 

Algorithms in this section are constructed on the model 

in Section II.B. Algorithm 1 covers the creation of PSV and 

Subject Gender Height (cm) Body Mass (Kg) Age 

1 Male 179 78 29 

2 Male 179 70 28 

3 Female 176 60 33 

4 Male 188 81 28 

5 Male 178 94 28 

6 Male 180 83 29 

7 Male 173 67 29 

8 Male 169 73 24 

9 Female 168 55 24 

10 Male 178 73 30 

11 Male 160 55 24 

12 Female 158 45 25 

13 Male 176 75 27 

14 Male 175 89 26 

15 Male 179 66 29 

16 Male 173 72 23 

17 Male 171 71 23 

18 Male 178 75 38 

Table I. Gender & Physical Features of the Subjects 

PEV sets. Algorithm 2 is utilized to reconstruct the ECG 

and SCG signals via PSEVS. First, the length of frames LF 

were defined as {8, 16, 32, 64}. Next, algorithm 1 and 2 

given in Table III and IV were respectively run on the 

dataset. 

III. RESULTS AND DISCUSSION 

Table V shows signal-to-noise ratio (SNR) values of the 

signals after preprocessing in comparison to raw signals. 

SNR unit is in decibels (dB). It shows that the information 

carried by the signals is overwhelmed by noise and can 

hardly be recovered. To filter the meaningful part of bio-

signals, the wavelet transform was applied up to the 

possible deepest level, but the values could slightly be 

improved. 

 Figure I illustrates predefined signature vector (PSV) 

sets with 8- and 16-sample frame lengths for ECG and SCG 

signals. Similarly, Figure II illustrates predefined envelope 

vector (PEV) sets with 8- and 16-sample frame lengths as 

well. After creating vector sets, algorithm 2 was executed 

step-by-step and intermediate error functions were 

calculated in each step to evaluate procedural accuracy. 

Table VI displays the error function values of the first ten 

frames of the reconstructed signals for subject 1 and 3 after 

picking a suitable signature vector from PSV sets for each  
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Subject Resting LBNP Post Total 

1 5 18,55 5 28,55 

2* 5 20 5 30 

3 5 20 5,13 30,13 

4 5 21 5,63 31,63 

5 5 20 5,71 30,71 

6* 5 20 7,14 32,14 

7* 5 20 7,91 32,91 

8* 5 20 6,75 31,75 

9* 5 15 6,8 26,8 

10 5 20 7,07 32,07 

11 5 20 7,75 32,75 

12* 5 15 6,02 26,02 

13 5 19,5 8,44 33,44 

14 5 20 6,87 31,87 

15* 5 20 7,65 32,65 

16 5 20 7,27 32,27 

17 5 20 6,9 31,9 

18 5 20 6,76 31,76 

Table II. Measurement Intervals 

frame. It can be seen that the values obtained are in 

accordance with the expected error function values 

approaching to zero well enough for step 1. These values 

prove that the model is able to pick the fittest signature 

vector from predefined signature vector sets. 

Table VII indicates the error values for the first ten 

frames of subject 1 and 3 after picking a suitable envelope 

vector from PEV sets for each frame. In fact, it was 

expected that the error values for envelope vectors should 

have gradually approached to zero even more after step 1. 

However, the values weirdly recede from zero. These 

results contradict with the claims of Gürkan et al. [12]. 

Table VIII points out the global error values after fixing the 

new frame-scaling coefficients for the reconstructed 

signals. The values exhibit a decrease once more to match 

the original signals, but the global error values which 

should almost be equal to zero could not be realized.  

Simulation results are given for ECG and SCG signals 

of subject 1 with 8- and 16-sample frame lengths in Figure 

III-VI respectively.  

It is visible that the reconstructed signals roughly match 

the original signals in respect of signal mean and direction,   

1. Convert the original signal to the main frame vector Xi 

2. Calculate the correlation matrix for each frame 
3. Calculate and reserve the eigenvector related to max. eigenvalue 

    which is named as signature vector for each frame 

4. Calculate an estimated frame-scaling coefficient of the signature 
    vector for each frame  

5. Calculate the diagonal matrix for each frame 

6. Weed out the similar signature and envelope vectors and create 
    predefined vector sets 

Table III. Algorithm I: Creation of PSV and PEV Sets 

1. Choose the fittest signature vector R with the corresponding CR 
    from PSVS for each frame 

2. Choose the fittest envelope vector K from PEVS for each frame  

    by saving CRR pair 

3. Calculate the final frame-scaling coefficient Ci by saving KR 

    pair 

4. Calculate the global error function value which should almost be 

    equal to zero to prove the equation Xi = CiKR 

Table IV. Algorithm II: Reconstruction of ECG & SCG Signals 

but the model could not output the anticipated signals 

reflecting perfectly the same as the original ones. 

It appears that SNR values of the reconstructed signals 

are much lower than the original signals while root-mean-

square (RMS) values remain approximately at the same 

level. Also, percentage root-mean-square difference (PRD) 

values which are used as an indicator of the quality of 

compressed and/or reconstructed signals for ECG by 

Blanco-Velasco et al. [23] widely fluctuate out of tolerance 

intervals. It should be noted that a high PRD value is a sign 

of much loss of information [12], [23].  

After creating individual vector sets for each subject, 

they were unified into two major sets called grand 

predefined signature and grand predefined envelope sets to 

enhance capabilities of the model. Despite that, it could not 

be achieved to improve the quality of reconstructed signals. 

In addition to the study done by Gürkan et al. [12], as 

eliminating similar patterns in creating vector sets, k-means 

clustering algorithm was implemented as well to finely pick 

the vectors instead of Pearson’s correlation formula. This 

attempt also could not reinforce the results. The proposed 

method by Gürkan et al. [11], [21] may not be properly 

working on extremely noisy bio-signals. Though it was 

claimed that performance of the proposed method does not 

depend on sampling conditions of bio-signals and it fully 

protects the diagnostic information inside the signals by the 

authors of aforementioned studies, no evidence supporting 

these claims could be acquired. The proposed method may 

be modified for this study by adding one more algorithm 

step which includes extracting local maxima from the 

reconstructed signals frame-by-frame and applying curve- 

fitting onto these points so that clinically significant signals 

to diagnose might be provided to physicians.  

On the other hand, the distinctive features of SCG 

signals which are oversensitive to high and low frequency 

interferences vanish when they are divided into sub-

components carrying vital information by means of a 

signature-based method. The reconstruction process wipes 

out the peak points corresponding to different cardiac 

events within SCG signals. It is highly critical to keep all 

the waveforms of SCG signals. In these methods, learning 

models are generally trained by using window frames 

which work on time-domain of bio-signals. Therefore, it 

can be possible to handle noisy signals which obstruct 

pulling the signatures out. 
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Subject 
ECG 

(Before) 

ECG 

(After) 

SCG 

(Before) 

SCG 

(After) 

1 -5,670 -4,405 -16,572 -16,569 

3 -2,532 1,336 -10,855 -10,850 

4 -5,987 -3,790 -13,161 -13,156 

5 -2,252 -2,084 -11,005 -10,995 

9 -4,798 -3,502 -11,551 -11,549 

10 -5,912 -2,805 -11,043 -11,041 

11 -5,345 -1,852 -14,154 -14,153 

13 -3,523 -1,789 -2,979 -2,977 

14 -2,391 0,503 -7,999 -7,998 

16 -3,075 -0,857 -11,783 -11,782 

Table V. SNR Values of ECG & SCG Signals Before/After 

Preprocessing 

IV. CONCLUSION 

In this study, ECG and SCG signals were modeled with 

the method called predefined signature and envelope vector 

sets (PSEVS). This method is founded on selecting 

recurrent patterns within the signals and creating a toolbox 

to reconstruct these signals with only vital part of the 

information carried. In this method, every single frame of 

 
ECG 8-Sample 

 
SCG 8-Sample 

 
ECG 16-Sample 

 
SCG 16-Sample 

Figure I. Sample PSV Sets for ECG & SCG Signals w/8- and 16-Sample 
Frame Lengths 

 

 
ECG 8-Sample 

 
SCG 8-Sample 

 
ECG 16-Sample 

 
SCG 16-Sample 

Figure II. Sample PEV Sets for ECG & SCG Signals w/8- and 16-

Sample Frame Lengths 

Subject I 

ECG 

Subject I 

SCG 

Subject III 

ECG 

Subject III 

SCG 

0,0204 0,0070 0,0072 0,0027 

0,0212 0,0043 0,0067 0,0009 

0,0219 0,0049 0,0067 0,0042 

0,0226 0,0043 0,0069 0,0051 

0,0232 0,0047 0,0073 0,0060 

0,0236 0,0040 0,0080 0,0047 

0,0240 0,0069 0,0078 0,0048 

0,0242 0,0064 0,0100 0,0218 

0,0244 0,0054 0,0115 0,0090 

0,0247 0,0042 0,0121 0,0032 

Table VI. Error Values After Picking the Fittest Signature Vector from 

PSV Sets 

Subject I 

ECG 

Subject I 

SCG 

Subject III 

ECG 

Subject III 

SCG 

0,0204 0,0070 0,0072 0,0027 

0,0212 0,0043 0,0067 0,0009 

0,0219 0,0049 0,0067 0,0042 

0,0226 0,0043 0,0069 0,0051 

0,0232 0,0047 0,0073 0,0060 

0,0236 0,0040 0,0080 0,0047 

0,0240 0,0069 0,0078 0,0048 

0,0242 0,0064 0,0100 0,0218 

0,0244 0,0054 0,0115 0,0090 

0,0247 0,0042 0,0121 0,0032 

Table VII. Error Values After Picking the Fittest Envelope Vector from 

PEV Sets 

each signal is defined by multiplication of three main 
elements, specifically a frame-scaling coefficient, a 
signature and an envelope vector. Those signature and 
envelope vectors are chosen from the vector sets which are 
created by using the ECG and SCG dataset. The dataset is 
one of the public datasets provided by PhysioNet 
Community. After the reconstruction stage, performance of 
the PSEVS method was evaluated by the error function 
values between the original and reconstructed signals. Even 
though this method pledges to provide an effective 
compression while protecting diagnostic information, it 
could not be achieved to get any error values perfectly 
converging to zero. Currently, it seems that it is not possible 
to present any properly reconstructed signals to healthcare 
professionals for medical diagnosis. The study may be 
extended by implementing learning-based methods to 
effectively work on these bio-signals for future prospects. 
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Subject I 

ECG 

Subject I 

SCG 

Subject III 

ECG 

Subject III 

SCG 

0,0204 0,0070 0,0072 0,0027 

0,0212 0,0043 0,0067 0,0009 

0,0219 0,0049 0,0067 0,0042 

0,0226 0,0043 0,0069 0,0051 

0,0232 0,0047 0,0073 0,0060 

0,0236 0,0040 0,0080 0,0047 

0,0240 0,0069 0,0078 0,0048 

0,0242 0,0064 0,0100 0,0218 

0,0244 0,0054 0,0115 0,0090 

0,0247 0,0042 0,0121 0,0032 

Table VIII. Global Error Values After Fixing the Frame-Scaling 

Coefficients 

Figure III. Original & Reconstructed ECG Signals for Subject 1 (LF:8) 

Figure IV. Original & Reconstructed SCG Signals for Subject 1 (LF:8) 

Figure V. Original & Reconstructed ECG Signals for Subject 1 (LF: 16) 

Figure VI. Original & Reconstructed SCG Signals for Subject 1 (LF: 16) 
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