Flag Counter
JOURNAL OF INTELLIGENT SYSTEMS WITH APPLICATIONS
J. Intell. Syst. Appl.
E-ISSN: 2667-6893

A Comparison of Different Strategies for The Modification of Quartz Tuning Forks Based Mass Sensitive Sensors Using Natural Melanin Nanoparticles

Doğal Melanin Nanopartikülleri Kullanarak Kuvars Ayar Çatalı Tabanlı Kütle Duyarlı Sensörlerin Modifikasyonu İçin Farklı Stratejilerin Karşılaştırması

How to cite: Demir D, Gündoğdu S, Kılıç , Kartallıoğlu T, Alkan Y, Baysoy E, Kaleli Can G. A comparison of different strategies for the modification of quartz tuning forks based mass sensitive sensors using natural melanin nanoparticles. J Intell Syst Appl 2021; 4(2): 128-132. DOI: 10.54856/jiswa.202112177

Full Text: PDF, in English.

Total number of downloads: 187

Title: A Comparison of Different Strategies for The Modification of Quartz Tuning Forks Based Mass Sensitive Sensors Using Natural Melanin Nanoparticles

Abstract: Quartz tuning fork (QTF) is a measurement tool that is gaining attraction nowadays due to remarkable features like their low cost, stable resonance frequency, and considerably low working frequency. However how to functionalize a QTF as a chemical or a physical sensor is still an important problem that needs to be solved for a widespread usage. This paper describes approaches to functionalize QTFs by utilizing melanin nanoparticles (MNP) in order to create a recognition layer for the creation of a target specific mass sensitive biosensor. In order to achieve this aim, electroplating and dip coating methods are chosen for their relative ease of use and cheap operating costs for the purpose of being industry-friendly and reproducible as a product for field applications. Moreover a comparative study on chemical etching of QTFs was conducted with the goal of improving MNP attachment during dip coating process.

Keywords: Quartz tuning fork; melanin nanoparticle; mass sensitive biosensor; nanobiosensor


Başlık: Doğal Melanin Nanopartikülleri Kullanarak Kuvars Ayar Çatalı Tabanlı Kütle Duyarlı Sensörlerin Modifikasyonu İçin Farklı Stratejilerin Karşılaştırması

Özet: Kuvars ayar çatalı (QTF) uygun maliyeti, kararlı ve düşük çalışma rezonansına sahip olması gibi üstün özellikleri sebebiyle, her geçen gün daha çok kabul gören bir ölçüm cihazı haline gelmektedir. Ancak kuvars ayar çatalların kimyasal veya fiziksel bir algılayıcı olarak yaygın olarak kullanılabilmesi için nasıl işlevselleştirilebileceği, halen çözülmesi gereken bir sorun olarak beklemektedir. Bu çalışmada kuvars ayar çatalların yüzeyinde melanin nonoparçacıklar yardımıyla bir tanıyıcı yüzey oluşturulması ve bu sayede belirli hedefleri algılayan bir kütle hassas biyosensör olarak kullanılabilmesi için farklı yaklaşımları ele alınmıştır. Bu amaca ulaşmak için görece düşük maliyetli olmaları ve endüstride kolay ve tekrarlanabilir olma özellikleri sebebiyle daldırma kaplama ve elektrokaplama işlemleri yöntem olarak seçilmiştir. Ayrıca daldırma kaplama yöntemindeki melanin nanoparçacıkların kuvars ayar çatallarının yüzeyine tutunumunu arttırmak için kimyasal aşındırma yöntemi de bu çalışmada uygulanmıştır.

Anahtar kelimeler: Kuvars ayar çatalı; melanin nanoparçacığı; kütle hassas biyosensör; nanobiyosensör


Bibliography:
  • Zhang J, Dai C, Su X, O’Shea SJ. Determination of liquid density with a low frequency mechanical sensor based on quartz tuning fork. Sensors and Actuators B: Chemical 2002; 84(2-3): 123-128.
  • Zeisel D, Menzi H, Ullrich L. A precise and robust quartz sensor based on tuning fork technology for (SF6)-gas density control. Sensors and Actuators A: Physical 2000; 80(3): 233-236.
  • Matsiev LF, Bennett JW, McFarland EW. Application of low frequency mechanical resonators to liquid property measurements. In 1998 IEEE Ultrasonics Symposium. Proceedings (Cat. No. 98CH36102), 1998, pp. 459-462.
  • Can GK, Ozguzar HF, Kabay G, Komurcu P, Mutlu M. Simultaneous insulation and modification of quartz tuning fork surface by single-step plasma polymerization technique with amine-rich precursors. MRS Communications 2018; 8(2): 541-549.
  • Ozguzar HF, Can GK, Kabay G, Mutlu M. Quartz tuning fork as a mass sensitive biosensor platform with a bi-layer film modification via plasma polymerization. MRS Communications 2019; 9(2): 710-718.
  • Kaleli-Can G, Ozguzar HF, Mutlu M. Development of mass sensitive sensor platform based on plasma polymerization technique: Quartz tuning fork as transducer. Applied Surface Science 2021; 540: 148360.
  • Alp B, Mutlu S, Mutlu M. Glow-discharge-treated cellulose acetate (CA) membrane for a high linearity single-layer glucose electrode in the food industry. Food Research International 2000; 33(2): 107-112.
  • Koshets IA, Kazantseva ZI, Shirshov YM. Polymer films as sensitive coatings for quartz crystal microbalance sensors array. Semiconductor Physics Quantum Electronics & Optoelectronics 2003; 6: 505-507.
  • Zhang C, Cappleman BP, Defibaugh‐Chavez M, Weinkauf DH. Glassy polymer‐sorption phenomena measured with a quartz crystal microbalance technique. Journal of Polymer Science Part B: Polymer Physics 2003; 41(18): 2109-2118.
  • Ozturk K, Durusoy M, Piskin E. A simple quartz crystal microbalance nucleic acid sensor for detection of telomerase. Journal of Bioactive and Compatible Polymers 2008; 23(6): 579-593.
  • Jenik M, Seifner A, Lieberzeit P, Dickert FL. Pollenimprinted polyurethanes for QCM allergen sensors. Analytical and Bioanalytical Chemistry 2009; 394(2): 523-528.
  • Tsai WB, Chien CY, Thissen H, Lai JY. Dopamine-assisted immobilization of poly (ethylene imine) based polymers for control of cell–surface interactions. Acta Biomaterialia 2011; 7(6): 2518-2525.
  • Rodoplu D, Sen Y, Mutlu M. Modification of quartz crystal microbalance surfaces via electrospun nanofibers intended for biosensor applications. Nanoscience and Nanotechnology Letters2013; 5(4): 444-451.
  • Kabay G, Can GK, Mutlu M.. Amyloid-like protein nanofibrous membranes as a sensing layer infrastructure for the design of mass-sensitive biosensors. Biosensors and Bioelectronics 2017; 97: 285-291.
  • Can GK, Komurcu P, Ozguzar HF, Kabay G, Mutlu M. Simultaneous insulation and modification of quartz tuning fork surface by single-step plasma polymerization technique with amine-rich precursors–ERRATUM. MRS Communications 2019; 9(3): 1124-1124.
  • Can GK, Mutlu S, Mutlu M. Plasma Polymerized Films for Mass Sensitive Biosensors. Natural and Applied Sciences Journal 2020; 2(1): 1-7.
  • Vigneshvar S, Sudhakumari CC, Senthilkumaran B, Prakash H. Recent advances in biosensor technology for potential applications–an overview. Frontiers in Bioengineering and Biotechnology 2016; 4: 11.
  • Kaleli‐Can G, Ozlu B, Ozguzar HF, Onal‐Ulusoy B, Kabay G, Eom T, Shim BS, Mutlu M. Natural melanin nanoparticle‐decorated screen‐printed carbon electrode: Performance test for amperometric determination of hexavalent chromium as model trace. Electroanalysis 2020; 32(8): 1696-1706.
  • Aragay G, Pons J, Merkoci A. Recent trends in macro, micro, and nanomaterial-based tools and strategies for heavymetal detection. Chemical Reviews 2011; 111(5): 3433-3458.
  • Gao C, Yu XY, Xiong SQ, Liu JH, Huang XJ. Electrochemical detection of arsenic (III) completely free from noble metal: Fe3O4 microspheres-room temperature ionic liquid composite showing better performance than gold. Analytical Chemistry 2013; 85(5): 2673-2680.
  • Bundschuh M, Filser J, Luderwald S, McKee MS, Metreveli G, Schaumann GE, Schulz R, Wganer S. Nanoparticles in the environment: where do we come from, where do we go to? Environmental Sciences Europe 2018; 30(1): 1-17.
  • Felix CC, Hyde JS, Sarna T, Sealy RC. Interactions of melanin with metal ions. Electron spin resonance evidence for chelate complexes of metal ions with free radicals. Journal of the American Chemical Society 1978; 100(12): 39223926.
  • Riley PA. Melanin. The International Journal of Biochemistry & Cell Biology 1997; 29(11): 1235-1239.
  • Shanmuganathan K, Cho JH, Iyer P, Baranowitz S, Ellison CJ. Thermooxidative stabilization of polymers using natural and synthetic melanins. Macromolecules 2011; 44(24): 94999507.
  • Wang D, Chen C, Ke X, Kang N, Shen Y, Liu Y, Zhou X, Wang H, Chen C, Ren L. Bioinspired near-infrared-excited sensing platform for in vitro antioxidant capacity assay based on upconversion nanoparticles and a dopamine–melanin hybrid system. ACS Applied Materials & Interfaces 2015; 7(5): 3030-3040.
  • Eom T, Woo K, Cho W, Heo JE, Jang D, Shin JI, Martin DC, Wie JJ, Shim BS. Nanoarchitecturing of natural melanin nanospheres by layerby-layer assembly: Macroscale anti inflammatory conductive coatings with optoelectronic tunability. Biomacromolecules 2017; 18(6): 1908-1917.
  • ASTM International. B374-96 (2003) Standard Terminology Relating to Electroplating; ASTM International: West Conshohocken, PA, 2003.
  • Lou HH, Huang Y. Electroplating. In: Encyclopedia of Chemical Processing, Taylor and Francis, New York, 2006, pp. 1-10.
  • Tang X, Yan X. Dip-coating for fibrous materials: mechanism, methods and applications. Journal of Sol-Gel Science and Technology 2017; 81(2): 378-404.