Flag Counter
J Intel Syst App
E-ISSN: 2667-6893

Forecasting Model to Predict the Spreading of the COVID-19 Outbreak in Turkey

Türkiye'de COVID-19 Salgınının Yayılımını Öngörmek İçin Tahmin Modeli

How to cite: Bereketoğlu C, Özcan N, Kıran TR, Yola ML. Forecasting model to predict the spreading of the covid-19 outbreak in turkey. Journal of Intelligent Systems with Applications 2021; 4(2): 95-102.

Full Text: PDF, in English.

Total number of downloads: 153

Title: Forecasting Model to Predict the Spreading of the COVID-19 Outbreak in Turkey

Abstract: This study aimed to forecast the future of the COVID-19 outbreak parameters such as spreading, case fatality, and case recovery values based on the publicly available epidemiological data for Turkey. We first performed different forecasting methods including Facebook’s Prophet, ARIMA and Decision Tree. Based on the metrics of MAPE and MAE, Facebook’s Prophet has the most effective forecasting model. Then, using Facebook’s Prophet, we generated a forecast model for the evolution of the outbreak in Turkey fifteen-days-ahead. Based on the reported confirmed cases, the simulations suggest that the total number of infected people could reach 4328083 (with lower and upper bounds of 3854261 and 4888611, respectively) by April 23, 2021. Simulation forecast shows that death toll could reach 35656 with lower and upper bounds of 34806 and 36246, respectively. Besides, our findings suggest that although more than 86.38% growth in recovered cases might be possible, the future active cases will also significantly increase compared to the current active cases. This time series analysis indicates an increase trend of the COVID-19 outbreak in Turkey in the near future. Altogether, the present study highlights the importance of an efficient data-driven forecast model analysis for the simulation of the pandemic transmission and hence for further implementation of essential interventions for COVID-19 outbreak.

Keywords: COVID-19; forecasting, Facebook’s Prophet, Turkish population, intervention

Başlık: Türkiye'de COVID-19 Salgınının Yayılımını Öngörmek İçin Tahmin Modeli

Özet: Bu çalışma, Türkiye için kamuya açık epidemiyolojik verilere dayanarak COVID-19 salgını yayılımı, ölüm oranı ve iyileşme verileri gibi parametlerinin geleceğini tahmin etmeyi amaçlamıştır. İlk olarak Facebook’s Prophet, ARIMA ve Decision Tree gibi farklı tahmin yöntemlerini uyguladık. MAPE ve MAE ölçümlerine dayalı olarak, Facebook’s Prophet en etkili tahmin modeli çıkmıştır. Daha sonra, Facebook’s Prophet kullanarak, salgının Türkiye'deki gelişimi için on beş gün öncesinden bir tahmin modeli oluşturduk. Bildirilen doğrulanmış vakalara dayanarak, simülasyonlar, enfekte olmuş kişilerin toplam sayısının 23 Nisan 2021'e kadar 4328083'e (sırasıyla 3854261 ve 4888611 alt ve üst sınırlar ile) ulaşabileceğini göstermektedir. Simülasyon tahmini, ölü sayısının sırasıyla 34806 ve 36246 alt ve üst sınırlar olmak üzere 35656'ya ulaşabileceğini göstermektedir. Ayrıca bulgularımız, iyileşen vaka oranın %86.38'i aşabileceğini, ancak gelecekteki aktif vakaların mevcut aktif vakalara göre önemli ölçüde artabileceğini de göstermektedir. Bu zaman serisi analizi, yakın gelecekte Türkiye'deki COVID-19 salgınının artış eğiliminde olduğunu göstermektedir. Genel olarak bu çalışma, pandemik yayılmanın simülasyonu ve dolayısıyla COVID-19 salgını için temel müdahalelerin daha ileri düzeyde uygulanması için verimli bir veriye dayalı tahmin modeli analizinin önemini vurgulamaktadır.

Anahtar kelimeler: COVID-19; tahmin; Facebook's prophet; Türk popülasyonu; müdahale

  • [1] Zhao S, Chen H. Modeling the epidemic dynamics and control of COVID-19 outbreak in China. Quantitative Biology. 2020:1-9.
  • [2] Vega DI. Lockdown, one, two, none, or smart. Modeling containing covid-19 infection. A conceptual model. Science of The Total Environment. 2020:138917.
  • [3] Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. Journal of travel medicine. 2020.
  • [4] Song P, Karako T. COVID-19: Real-time dissemination of scientific information to fight a public health emergency of international concern. Bioscience trends. 2020.
  • [5] Patel A, Jernigan DB. Initial public health response and interim clinical guidance for the 2019 novel coronavirus outbreak—United States, December 31, 2019–February 4, 2020. Morbidity and Mortality Weekly Report. 2020; 69:140.
  • [6] Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020; 395:507-13.
  • [7] Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet. 2020; 395:497-506.
  • [8] Tu Y-F, Chien C-S, Yarmishyn AA, Lin Y-Y, Luo Y-H, Lin Y-T, et al. A Review of SARS-CoV-2 and the Ongoing Clinical Trials. International journal of molecular sciences. 2020; 21:2657.
  • [9] Zhu W, Li X, Wu Y, Xu C, Li L, Yang J, et al. Community quarantine strategy against coronavirus disease 2019 in Anhui: an evaluation based on trauma center patients. International Journal of Infectious Diseases. 2020.
  • [10] Tobías A. Evaluation of the lockdowns for the SARS-CoV-2 epidemic in Italy and Spain after one month follow up. Science of The Total Environment. 2020:138539.
  • [11] Newton PN, Bond KC, Adeyeye M, Antignac M, Ashenef A, Awab GR, et al. COVID-19 and risks to the supply and quality of tests, drugs, and vaccines. The Lancet Global Health. 2020.
  • [12] Lazzerini M, Barbi E, Apicella A, Marchetti F, Cardinale F, Trobia G. Delayed access or provision of care in Italy resulting from fear of COVID-19. The Lancet Child & Adolescent Health. 2020.
  • [13] Xu J, Cheng Y, Yuan X, Li WV, Zhang L. Trends and prediction in daily incidence of novel coronavirus infection in China, Hubei Province and Wuhan City: an application of Farr's law. American Journal of Translational Research. 2020; 12:1355.
  • [14] Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. The Lancet. 2020; 395:689-97.
  • [15] Chakraborty T, Ghosh I. Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis. Chaos, Solitons & Fractals. 2020:109850.
  • [16] Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. The Lancet infectious diseases. 2020.
  • [17] Taylor SJ, Letham B. Forecasting at scale. The American Statistician. 2018; 72:37-45.
  • [18] Liu H, Cocea M. Induction of classification rules by gini-index based rule generation. Information Sciences. 2018; 436:227-46.
  • [19] Box GE, Jenkins GM, Reinsel GC, Ljung GM. Time series analysis: forecasting and control: John Wiley & Sons; 2015.
  • [20] Shadab A, Said S, Ahmad S. Box–Jenkins multiplicative ARIMA modeling for prediction of solar radiation: a case study. International Journal of Energy and Water Resources. 2019; 3:305-18.
  • [21] Roda WC, Varughese MB, Han D, Li MY. Why is it difficult to accurately predict the COVID-19 epidemic? Infectious Disease Modelling. 2020.
  • [22] Norman J, Bar-Yam Y, Taleb NN. Systemic Risk of Pandemic via Novel Pathogens—Coronavirus: A Note. New England Complex Systems Institute (January 26, 2020). 2020.
  • [23] Petropoulos F, Makridakis S. Forecasting the novel coronavirus COVID-19. PloS one. 2020; 15: e0231236.
  • [24] Wu X, Nethery RC, Sabath BM, Braun D, Dominici F. Exposure to air pollution and COVID-19 mortality in the United States. medRxiv. 2020.
  • [25] Martelletti L, Martelletti P. Air pollution and the novel Covid-19 disease: a putative disease risk factor. SN Comprehensive Clinical Medicine. 2020:1-5.